Changelog#

0.15.5#

New#

  • Added documentation and helm chart configuration for threaded sensor evaluations.
  • Added documentation and helm chart configuration for tick retention policies.
  • Added descriptions for default config schema. Fields like execution, loggers, ops, and resources are now documented.
  • UnresolvedAssetJob objects can now be passed to run status sensors.
  • [dagit] A new global asset lineage view, linked from the Asset Catalog and Asset Group pages, allows you to view a graph of assets in all loaded asset groups and filter by query selector and repo.
  • [dagit] A new option on Asset Lineage pages allows you to choose how many layers of the upstream / downstream graph to display.
  • [dagit] Dagit's DAG view now collapses large sets of edges between the same ops for improved readability and rendering performance.

Bugfixes#

  • Fixed a bug with materialize that would cause required resources to not be applied correctly.
  • Fixed issue that caused repositories to fail to load when build_schedule_from_partitioned_job and define_asset_job were used together.
  • Fixed a bug that caused auto run retries to always use the FROM_FAILURE strategy
  • Previously, it was possible to construct Software-Defined Assets from graphs whose leaf ops were not mapped to assets. This is invalid, as these ops are not required for the production of any assets, and would cause confusing behavior or errors on execution. This will now result in an error at definition time, as intended.
  • Fixed issue where the run monitoring daemon could mark completed runs as failed if they transitioned quickly between STARTING and SUCCESS status.
  • Fixed stability issues with the sensor daemon introduced in 0.15.3 that caused the daemon to fail heartbeat checks if the sensor evaluation took too long.
  • Fixed issues with the thread pool implementation of the sensor daemon where race conditions caused the sensor to fire more frequently than the minimum interval.
  • Fixed an issue with storage implementations using MySQL server version 5.6 which caused SQL syntax exceptions to surface when rendering the Instance overview pages in Dagit.
  • Fixed a bug with the default_executor_def argument on repository where asset jobs that defined executor config would result in errors.
  • Fixed a bug where an erroneous exception would be raised if an empty list was returned for a list output of an op.
  • [dagit] Clicking the "Materialize" button for assets with configurable resources will now present the asset launchpad.
  • [dagit] If you have an asset group and no jobs, Dagit will display it by default rather than directing you to the asset catalog.
  • [dagit] DAG renderings of software-defined assets now display only the last component of the asset's key for improved readability.
  • [dagit] Fixes a regression where clicking on a source asset would trigger a GraphQL error.
  • [dagit] Fixed issue where the “Unloadable” section on the sensors / schedules pages in Dagit were populated erroneously with loadable sensors and schedules
  • [dagster-dbt] Fixed an issue where an exception would be raised when using the dbt build command with Software-Defined Assets if a test was defined on a source.

Deprecations#

  • Removed the deprecated dagster-daemon health-check CLI command

Community Contributions#

  • TimeWindow is now exported from the dagster package (Thanks @nvinhphuc!)
  • Added a fix to allow customization of slack messages (Thanks @solarisa21!)
  • [dagster-databricks] The databricks_pyspark_step_launcher now allows you to configure the following (Thanks @Phazure!):
    • the aws_attributes of the cluster that will be spun up for the step.
    • arbitrary environment variables to be copied over to databricks from the host machine, rather than requiring these variables to be stored as secrets.
    • job and cluster permissions, allowing users to view the completed runs through the databricks console, even if they’re kicked off by a service account.

Experimental#

  • [dagster-k8s] Added k8s_job_op to launch a Kubernetes Job with an arbitrary image and CLI command. This is in contrast with the k8s_job_executor, which runs each Dagster op in a Dagster job in its own k8s job. This op may be useful when you need to orchestrate a command that isn't a Dagster op (or isn't written in Python). Usage:

    from dagster_k8s import k8s_job_op
    
    my_k8s_op = k8s_job_op.configured({
     "image": "busybox",
     "command": ["/bin/sh", "-c"],
     "args": ["echo HELLO"],
     },
     name="my_k8s_op",
    )
    
  • [dagster-dbt] The dbt asset-loading functions now support partitions_def and partition_key_to_vars_fn parameters, adding preliminary support for partitioned dbt assets. To learn more, check out the Github issue!

0.15.4#

  • Reverted sensor threadpool changes from 0.15.3 to address daemon stability issues.

0.15.3#

New#

  • When loading an upstream asset or op output as an input, you can now set custom loading behavior using the input_manager_key argument to AssetIn and In
  • The list of objects returned by a repository can now contain nested lists.
  • Added a data retention instance setting in dagster.yaml that enables the automatic removal of sensor/schedule ticks after a certain number of days.
  • Added a sensor daemon setting in dagster.yaml that enables sensor evaluations to happen in a thread pool to increase throughput.
  • materialize_to_memory and materialize now both have the partition_key argument.
  • Output and DynamicOutput objects now work with deep equality checks:
Output(value=5, name="foo") == Output(value=5, name="foo") # evaluates to True
  • RunRequests can now be returned from run status sensors
  • Added resource_defs argument to AssetsDefinition.from_graph. Allows for specifying resources required by constituent ops directly on the asset.
  • When adding a tag to the Run search filter in Dagit by clicking the hover menu on the tag, the tag will now be appended to the filter instead of replacing the entire filter state.

Bugfixes#

  • [dagster-dbt] An exception is now emitted if you attempt to invoke the library without having dbt-core installed. dbt-core is now also added as a dependency to the library.
  • Asset group names can now contain reserved python keywords
  • Fixed a run config parsing bug that was introduced in 0.15.1 that caused Dagit to interpret datetime strings as datetime objects and octal strings as integers.
  • Runs that have failed to start are now represented in the Instance Timeline view on Dagit.
  • Fixed an issue where the partition status was missing for partitioned jobs that had no runs.
  • Fixed a bug where op/resource invocation would error when resources were required, no context was used in the body of the function, and no context was provided when invoking.
  • [dagster-databricks] Fixed an issue where an exception related to the deprecated prior_attempts_count field when using the databricks_pyspark_step_launcher.
  • [dagster-databricks] Polling information logged from the databricks_pyspark_step_launcher is now emitted at the DEBUG level instead of INFO.
  • In the yaml editor in Dagit, the typeahead feature now correctly shows suggestions for nullable schema types.
  • When editing asset configuration in Dagit, the “Scaffold config” button in the Dagit launchpad sometimes showed the scaffold dialog beneath the launchpad. This has been fixed.
  • A recent change added execution timezones to some human-readable cron strings on schedules in Dagit. This was added incorrectly in some cases, and has now been fixed.
  • In the Dagit launchpad, a config state containing only empty newlines could lead to an error that could break the editor. This has been fixed.
  • Fixed issue that could cause partitioned graph-backed assets to attempt to load upstream inputs from the incorrect path when using the fs_io_manager (or other similar io managers).
  • [dagster-dbt] Fixed issue where errors generated from issuing dbt cli commands would only show json-formatted output, rather than a parsed, human-readable output.
  • [dagster-dbt] By default, dagster will invoke the dbt cli with a --log-format json flag. In some cases, this may cause dbt to report incorrect or misleading error messages. As a workaround, it is now possible to disable this behavior by setting the json_log_format configuration option on the dbt_cli_resource to False.
  • materialize_to_memory erroneously allowed non-in-memory io managers to be used. Now, providing io managers to materialize_to_memory will result in an error, and mem_io_manager will be provided to all io manager keys.

0.15.2#

Bugfixes#

  • Fixed an issue where asset dependency resolution would break when two assets in the same group had the same name

0.15.1#

New#

  • When Dagster loads an event from the event log of a type that it doesn’t recognize (for example, because it was created by a newer version of Dagster) it will now return a placeholder event rather than raising an exception.
  • AssetsDefinition.from_graph() now accepts a group_name parameter. All assets created by from_graph are assigned to this group.
  • You can define an asset from an op via a new utility method AssetsDefinition.from_op. Dagster will infer asset inputs and outputs from the ins/outs defined on the @op in the same way as @graphs.
  • A default executor definition can be defined on a repository using the default_executor_def argument. The default executor definition will be used for all op/asset jobs that don’t explicitly define their own executor.
  • JobDefinition.run_request_for_partition now accepts a tags argument (Thanks @jburnich!)
  • In Dagit, the graph canvas now has a dotted background to help it stand out from the reset of the UI.
  • @multi_asset now accepts a resource_defs argument. The provided resources can be either used on the context, or satisfy the io manager requirements of the outs on the asset.
  • In Dagit, show execution timezone on cron strings, and use 12-hour or 24-hour time format depending on the user’s locale.
  • In Dagit, when viewing a run and selecting a specific step in the Gantt chart, the compute log selection state will now update to that step as well.
  • define_asset_job and to_job now can now accept a partitions_def argument and a config argument at the same time, as long as the value for the config argument is a hardcoded config dictionary (not a PartitionedConfig or ConfigMapping)

Bugfixes#

  • Fixed an issue where entering a string in the launchpad that is valid YAML but invalid JSON would render incorrectly in Dagit.
  • Fixed an issue where steps using the k8s_job_executor and docker_executor would sometimes return the same event lines twice in the command-line output for the step.
  • Fixed type annotations on the @op decorator (Thanks Milos Tomic!)
  • Fixed an issue where job backfills were not displayed correctly on the Partition view in Dagit.
  • UnresolvedAssetJobDefinition now supports the run_request_for_partition method.
  • Fixed an issue in Dagit where the Instance Overview page would briefly flash a loading state while loading fresh data.

Breaking Changes#

  • Runs that were executed in newer versions of Dagster may produce errors when their event logs are loaded in older versions of Dagit, due to new event types that were recently added. Going forward, Dagit has been made more resilient to handling new events.

Deprecations#

  • Updated deprecation warnings to clarify that the deprecated metadata APIs will be removed in 0.16.0, not 0.15.0.

Experimental#

  • If two assets are in the same group and the upstream asset has a multi-segment asset key, the downstream asset doesn’t need to specify the full asset key when declaring its dependency on the upstream asset - just the last segment.

Documentation#

  • Added dedicated sections for op, graph, and job Concept docs in the sidenav
  • Moved graph documentation from the jobs docs into its own page
  • Added documentation for assigning asset groups and viewing them in Dagit
  • Added apidoc for AssetOut and AssetIn
  • Fixed a typo on the Run Configuration concept page (Thanks Wenshuai Hou!)
  • Updated screenshots in the software-defined assets tutorial to match the new Dagit UI
  • Fixed a typo in the Defining an asset section of the software-defined assets tutorial (Thanks Daniel Kim!)

0.15.0 "Cool for the Summer"#

Major Changes#

  • Software-defined assets are now marked fully stable and are ready for prime time - we recommend using them whenever your goal using Dagster is to build and maintain data assets.

  • You can now organize software defined assets into groups by providing a group_name on your asset definition. These assets will be grouped together in Dagit.

  • Software-defined assets now accept configuration, similar to ops. E.g.

    from dagster import asset
    
    @asset(config_schema={"iterations": int})
    def my_asset(context):
        for i in range(context.op_config["iterations"]):
            ...
    
  • Asset definitions can now be created from graphs via AssetsDefinition.from_graph:

    @graph(out={"asset_one": GraphOut(), "asset_two": GraphOut()})
    def my_graph(input_asset):
        ...
    
    graph_asset = AssetsDefinition.from_graph(my_graph)
    
  • execute_in_process and GraphDefinition.to_job now both accept an input_values argument, so you can pass arbitrary Python objects to the root inputs of your graphs and jobs.

  • Ops that return Outputs and DynamicOutputs now work well with Python type annotations. You no longer need to sacrifice static type checking just because you want to include metadata on an output. E.g.

    from dagster import Output, op
    
    @op
    def my_op() -> Output[int]:
        return Output(5, metadata={"a": "b"})
    
  • You can now automatically re-execute runs from failure. This is analogous to op-level retries, except at the job level.

  • You can now supply arbitrary structured metadata on jobs, which will be displayed in Dagit.

  • The partitions and backfills pages in Dagit have been redesigned to be faster and show the status of all partitions, instead of just the last 30 or so.

  • The left navigation pane in Dagit is now grouped by repository, which makes it easier to work with when you have large numbers of jobs, especially when jobs in different repositories have the same name.

  • The Asset Details page for a software-defined asset now includes a Lineage tab, which makes it easy to see all the assets that are upstream or downstream of an asset.

Breaking Changes and Deprecations#

Software-defined assets#

This release marks the official transition of software-defined assets from experimental to stable. We made some final changes to incorporate feedback and make the APIs as consistent as possible:

  • Support for adding tags to asset materializations, which was previously marked as experimental, has been removed.
  • Some of the properties of the previously-experimental AssetsDefinition class have been renamed. group_names is now group_names_by_key, asset_keys_by_input_name is now keys_by_input_name, and asset_keys_by_output_name is now keys_by_output_name, asset_key is now key, and asset_keys is now keys.
  • Removes previously experimental IO manager fs_asset_io_manager in favor of merging its functionality with fs_io_manager. fs_io_manager is now the default IO manager for asset jobs, and will store asset outputs in a directory named with the asset key. Similarly, removed adls2_pickle_asset_io_manager, gcs_pickle_asset_io_manager , and s3_pickle_asset_io_manager. Instead, adls2_pickle_io_manager, gcs_pickle_io_manager, and s3_pickle_io_manager now support software-defined assets.
  • (deprecation) The namespace argument on the @asset decorator and AssetIn has been deprecated. Users should use key_prefix instead.
  • (deprecation) AssetGroup has been deprecated. Users should instead place assets directly on repositories, optionally attaching resources using with_resources. Asset jobs should be defined using define_assets_job (replacing AssetGroup.build_job), and arbitrary sets of assets can be materialized using the standalone function materialize (replacing AssetGroup.materialize).
  • (deprecation) The outs property of the previously-experimental @multi_asset decorator now prefers a dictionary whose values are AssetOut objects instead of a dictionary whose values are Out objects. The latter still works, but is deprecated.
  • The previously-experimental property on OpExecutionContext called output_asset_partition_key is now deprecated in favor of asset_partition_key_for_output

Event records#

  • The get_event_records method on DagsterInstance now requires a non-None argument event_records_filter. Passing a None value for the event_records_filter argument will now raise an exception where previously it generated a deprecation warning.
  • Removed methods events_for_asset_key and get_asset_events, which have been deprecated since 0.12.0.

Extension libraries#

  • [dagster-dbt] (breaks previously-experimental API) When using the load_assets_from_dbt_project or load_assets_from_dbt_manifest , the AssetKeys generated for dbt sources are now the union of the source name and the table name, and the AssetKeys generated for models are now the union of the configured schema name for a given model (if any), and the model name. To revert to the old behavior: dbt_assets = load_assets_from_dbt_project(..., node_info_to_asset_key=lambda node_info: AssetKey(node_info["name"]).
  • [dagster-k8s] In the Dagster Helm chart, user code deployment configuration (like secrets, configmaps, or volumes) is now automatically included in any runs launched from that code. Previously, this behavior was opt-in. In most cases, this will not be a breaking change, but in less common cases where a user code deployment was running in a different kubernetes namespace or using a different service account, this could result in missing secrets or configmaps in a launched run that previously worked. You can return to the previous behavior where config on the user code deployment was not applied to any runs by setting the includeConfigInLaunchedRuns.enabled field to false for the user code deployment. See the Kubernetes Deployment docs for more details.
  • [dagster-snowflake] dagster-snowflake has dropped support for python 3.6. The library it is currently built on, snowflake-connector-python, dropped 3.6 support in their recent 2.7.5 release.

Other#

  • The prior_attempts_count parameter is now removed from step-launching APIs. This parameter was not being used, as the information it held was stored elsewhere in all cases. It can safely be removed from invocations without changing behavior.
  • The FileCache class has been removed.
  • Previously, when schedules/sensors targeted jobs with the same name as other jobs in the repo, the jobs on the sensor/schedule would silently overwrite the other jobs. Now, this will cause an error.

New since 0.14.20#

  • A new define_asset_job function allows you to define a selection of assets that should be executed together. The selection can be a simple string, or an AssetSelection object. This selection will be resolved into a set of assets once placed on the repository.

    from dagster import repository, define_asset_job, AssetSelection
    
    string_selection_job = define_asset_job(
        name="foo_job", selection="*foo"
    )
    object_selection_job = define_asset_job(
        name="bar_job", selection=AssetSelection.groups("some_group")
    )
    
    @repository
    def my_repo():
        return [
            *my_list_of_assets,
            string_selection_job,
            object_selection_job,
        ]
    
  • [dagster-dbt] Assets loaded with load_assets_from_dbt_project and load_assets_from_dbt_manifest will now be sorted into groups based on the subdirectory of the project that each model resides in.

  • @asset and @multi_asset are no longer considered experimental.

  • Adds new utility methods load_assets_from_modules, assets_from_current_module, assets_from_package_module, and assets_from_package_name to fetch and return a list of assets from within the specified python modules.

  • Resources and io managers can now be provided directly on assets and source assets.

    from dagster import asset, SourceAsset, resource, io_manager
    
    @resource
    def foo_resource():
        pass
    
    @asset(resource_defs={"foo": foo_resource})
    def the_resource(context):
        foo = context.resources.foo
    
    @io_manager
    def the_manager():
        ...
    
    @asset(io_manager_def=the_manager)
    def the_asset():
        ...
    

    Note that assets provided to a job must not have conflicting resource for the same key. For a given job, all resource definitions must match by reference equality for a given key.

  • A materialize_to_memory method which will load the materializations of a provided list of assets into memory:

    from dagster import asset, materialize_to_memory
    
    @asset
    def the_asset():
        return 5
    
    result = materialize_to_memory([the_asset])
    output = result.output_for_node("the_asset")
    
  • A with_resources method, which allows resources to be added to multiple assets / source assets at once:

    from dagster import asset, with_resources, resource
    
    @asset(required_resource_keys={"foo"})
    def requires_foo(context):
        ...
    
    @asset(required_resource_keys={"foo"})
    def also_requires_foo(context):
        ...
    
    @resource
    def foo_resource():
        ...
    
    requires_foo, also_requires_foo = with_resources(
        [requires_foo, also_requires_foo],
        {"foo": foo_resource},
    )
    
  • You can now include asset definitions directly on repositories. A default_executor_def property has been added to the repository, which will be used on any materializations of assets provided directly to the repository.

    from dagster import asset, repository, multiprocess_executor
    
    @asset
    def my_asset():
      ...
    
    @repository(default_executor_def=multiprocess_executor)
    def repo():
        return [my_asset]
    
  • The run_storage, event_log_storage, and schedule_storage configuration sections of the dagster.yaml can now be replaced by a unified storage configuration section. This should avoid duplicate configuration blocks with your dagster.yaml. For example, instead of:

    # dagster.yaml
    run_storage:
    module: dagster_postgres.run_storage
    class: PostgresRunStorage
    config:
        postgres_url: { PG_DB_CONN_STRING }
    event_log_storage:
    module: dagster_postgres.event_log
    class: PostgresEventLogStorage
    config:
        postgres_url: { PG_DB_CONN_STRING }
    schedule_storage:
    module: dagster_postgres.schedule_storage
    class: PostgresScheduleStorage
    config:
        postgres_url: { PG_DB_CONN_STRING }
    

    You can now write:

    storage:
      postgres:
        postgres_url: { PG_DB_CONN_STRING }
    
  • All assets where a group_name is not provided are now part of a group called default.

  • The group_name parameter value for @asset is now restricted to only allow letters, numbers and underscore.

  • You can now set policies to automatically retry Job runs. This is analogous to op-level retries, except at the job level. By default the retries pick up from failure, meaning only failed ops and their dependents are executed.

  • [dagit] The new repository-grouped left navigation is fully launched, and is no longer behind a feature flag.

  • [dagit] The left navigation can now be collapsed even when the viewport window is wide. Previously, the navigation was collapsible only for small viewports, but kept in a fixed, visible state for wide viewports. This visible/collapsed state for wide viewports is now tracked in localStorage, so your preference will persist across sessions.

  • [dagit] Queued runs can now be terminated from the Run page.

  • [dagit] The log filter on a Run page now shows counts for each filter type, and the filters have higher contrast and a switch to indicate when they are on or off.

  • [dagit] The partitions and backfill pages have been redesigned to focus on easily viewing the last run state by partition. These redesigned pages were previously gated behind a feature flag — they are now loaded by default.

  • [dagster-k8s] Overriding labels in the K8sRunLauncher will now apply to both the Kubernetes job and the Kubernetes pod created for each run, instead of just the Kubernetes pod.

Bugfixes#

  • [dagster-dbt] In some cases, if Dagster attempted to rematerialize a dbt asset, but dbt failed to start execution, asset materialization events would still be emitted. This has been fixed.
  • [dagit] On the Instance Overview page, the popover showing details of overlapping batches of runs is now scrollable.
  • [dagit] When viewing Instance Overview, reloading a repository via controls in the left navigation could lead to an error that would crash the page due to a bug in client-side cache state. This has been fixed.
  • [dagit] When scrolling through a list of runs, scrolling would sometimes get stuck on certain tags, specifically those with content overflowing the width of the tag. This has been fixed.
  • [dagit] While viewing a job page, the left navigation item corresponding to that job will be highlighted, and the navigation pane will scroll to bring it into view.
  • [dagit] Fixed a bug where the “Scaffold config” button was always enabled.

Community Contributions#

  • You can now provide dagster-mlflow configuration parameters as environment variables, thanks @chasleslr!

Documentation#

  • Added a guide that helps users who are familiar with ops and graphs understand how and when to use software-defined assets.
  • Updated and reorganized docs to document software-defined assets changes since 0.14.0.
  • The Deploying in Docker example now includes an example of using the docker_executor to run each step of a job in a different Docker container.
  • Descriptions for the top-level fields of Dagit GraphQL queries, mutations, and subscriptions have been added.

0.14.20#

New#

  • [dagster-aws] Added an env_vars field to the EcsRunLauncher that allows you to configure environment variables in the ECS task for launched runs.
  • [dagster-k8s] The env_vars field on K8sRunLauncher and k8s_job_executor can now except input of the form ENV_VAR_NAME=ENV_VAR_VALUE, and will set the value of ENV_VAR_NAME to ENV_VAR_VALUE. Previously, it only accepted input of the form ENV_VAR_NAME, and the environment variable had to be available in the pod launching the job.
  • [dagster-k8s] setting ‘includeConfigInLaunchedRuns’ on a user code deployment will now also include any image pull secrets from the user code deployment in the pod for the launched runs.

Bugfixes#

  • A recent change had made it so that, when IOManager.load_input was called to load an asset that was not being materialized as part of the run, the provided context would not include the metadata for that asset. context.upstream_output.metadata now correctly returns the metadata on the upstream asset.
  • Fixed an issue where using generic type aliases introduced in Python 3.9 (like list[str]) as the type of an input would raise an exception.
  • [dagster-k8s] Fixed an issue where upgrading the Helm chart version without upgrading your user code deployment version would result in an “Received unexpected config entry "scheme" at path root:postgres_db" error.

0.14.19#

New#

  • Metadata can now be added to jobs (via the metadata parameter) and viewed in dagit. You can use it to track code owners, link to docs, or add other useful information.
  • In the Dagit launchpad, the panel below the config editor now shows more detailed information about the state of the config, including error state and whether the config requires further scaffolding or the removal of extra config.
  • FileCache is now marked for deprecation in 0.15.0.
  • In Dagit, the asset catalog now shows the last materialization for each asset and links to the latest run.
  • Assets can now have a config_schema. If you attempt to materialize an asset with a config schema in Dagit, you'll be able to enter the required config via a modal.

Bugfixes#

  • [helm] Fixed an issue where string floats and integers were not properly templated as image tags.
  • [dagster-k8s] Fixed an issue when using the k8s_job_executor where ops with long names sometimes failed to create a pod due to a validation error with the label names automatically generated by Dagster.
  • [dagster-aws] Fixed an issue where ECS tasks with large container contexts would sometimes fail to launch because their request to the ECS RunTask API was too large.

Breaking Changes#

  • fs_asset_io_manager has been removed in favor of merging its functionality with fs_io_manager. fs_io_manager is now the default IO manager for asset jobs, and will store asset outputs in a directory named with the asset key.

Community Contributions#

  • Fixed a bug that broke the k8s_job_executor’s max_conccurent configuration. Thanks @fahadkh!
  • Fixed a bug that caused the fs_io_manager to incorrectly handle assets associated with upstream assets. Thanks @aroig!

Documentation#

  • [helm] Add documentation for code server image pull secrets in the main chart.
  • The Dagster README has been revamped with documentation and community links.

0.14.17#

New#

  • Added a pin to protobuf version 3 due to a backwards incompatible change in the probobuf version 4 release.
  • [helm] The name of the Dagit deployment can now be overridden in the Dagster Helm chart.
  • [dagit] The left navigation now shows jobs as expandable lists grouped by repository. You can opt out of this change using the feature flag in User Settings.
  • [dagit] In the left navigation, when a job has more than one schedule or sensor, clicking the schedule/sensor icon will now display a dialog containing the full list of schedules and sensors for that job.
  • [dagit] Assets on the runs page are now shown in more scenarios.
  • [dagster-dbt] dbt assets now support subsetting! In dagit, you can launch off a dbt command which will only refresh the selected models, and when you’re building jobs using AssetGroup.build_job(), you can define selections which select subsets of the loaded dbt project.
  • [dagster-dbt][experimental] The load_assets_from_dbt_manifest function now supports an experimental select parameter. This allows you to use dbt selection syntax to select from an existing manifest.json file, rather than having Dagster re-compile the project on demand.
  • For software-defined assets, OpExecutionContext now exposes an asset_key_for_output method, which returns the asset key that one of the op’s outputs corresponds too.
  • The Backfills tab in Dagit loads much faster when there have been backfills that produced large numbers of runs.
  • Added the ability to run the Dagster Daemon as a Python module, by running python -m dagster.daemon.
  • The non_argument_deps parameter for the asset and multi_asset decorators can now be a set of strings in addition to a set of AssetKey.

Bugfixes#

  • [dagit] In cases where Dagit is unable to make successful WebSocket connections, run logs could become stuck in a loading state. Dagit will now time out on the WebSocket connection attempt after a brief period of time. This allows run logs to fall back to http requests and move past the loading state.
  • In version 0.14.16, launching an asset materialization run with source assets would error with an InvalidSubsetError. This is now fixed.
  • Empty strings are no longer allowed as AssetKeys.
  • Fixed an issue where schedules built from partitioned job config always ran at midnight, ignoring any hour or minute offset that was specified on the config.
  • Fixed an issue where if the scheduler was interrupted and resumed in the middle of running a schedule tick that produced multiple RunRequests, it would show the same run ID multiple times on the list of runs for the schedule tick.
  • Fixed an issue where Dagit would raise a GraphQL error when a non-dictionary YAML string was entered into the Launchpad.
  • Fixed an issue where Dagster gRPC servers would sometimes raise an exception when loading repositories with many partition sets.
  • Fixed an issue where the snowflake_io_manager would sometimes raise an error with pandas 1.4 or later installed.
  • Fixed an issue where re-executing an entire set of dynamic steps together with their upstream step resulted in DagsterExecutionStepNotFoundError. This is now fixed.
  • [dagit] Added loading indicator for job-scoped partition backfills.
  • Fixed an issue that made it impossible to have graph-backed assets with upstream SourceAssets.

Community Contributions#

  • AssetIn can now accept a string that will be coerced to an AssetKey. Thanks @aroig!
  • Runtime type checks improved for some asset-related functions. Thanks @aroig!
  • Docs grammar fixes. Thanks @dwinston!
  • Dataproc ops for dagster-gcp now have user-configurable timeout length. Thanks @3cham!

0.14.16#

New#

  • AssetsDefinition.from_graph now accepts a partitions_def argument.
  • @asset-decorated functions can now accept variable keyword arguments.
  • Jobs executed in ECS tasks now report the health status of the ECS task
  • The CLI command dagster instance info now prints the current schema migration state for the configured instance storage.
  • [dagster-dbt] You can now configure a docs_url on the dbt_cli_resource. If this value is set, AssetMaterializations associated with each dbt model will contain a link to the dbt docs for that model.
  • [dagster-dbt] You can now configure a dbt_cloud_host on the dbt_cloud_resource, in the case that your dbt cloud instance is under a custom domain.

Bugfixes#

  • Fixed a bug where InputContext.upstream_output was missing the asset_key when it referred to an asset outside the run.
  • When specifying a selection parameter in AssetGroup.build_job(), the generated job would include an incorrect set of assets in certain situations. This has been fixed.
  • Previously, a set of database operational exceptions were masked with a DagsterInstanceSchemaOutdated exception if the instance storage was not up to date with the latest schema. We no longer wrap these exceptions, allowing the underlying exceptions to bubble up.
  • [dagster-airbyte] Fixed issue where successfully completed Airbyte syncs would send a cancellation request on completion. While this did not impact the sync itself, if alerts were set up on that connection, they would get triggered regardless of if the sync was successful or not.
  • [dagster-azure] Fixed an issue where the Azure Data Lake Storage adls2_pickle_io_manager would sometimes fail to recursively delete a folder when cleaning up an output.
  • Previously, if two different jobs with the same name were provided to the same repo, and one was targeted by a sensor/schedule, the job provided by the sensor/schedule would silently overwrite the other job instead of failing. In this release, a warning is fired when this case is hit, which will turn into an error in 0.15.0.
  • Dagit will now display workspace errors after reloading all repositories.

Breaking Changes#

  • Calls to instance.get_event_records without an event type filter is now deprecated and will generate a warning. These calls will raise an exception starting in 0.15.0.

Community Contributions#

  • @multi_asset now supports partitioning. Thanks @aroig!
  • Orphaned process detection now works correctly across a broader set of platforms. Thanks @aroig!
  • [K8s] Added a new max_concurrent field to the k8s_job_executor that limits the number of concurrent Ops that will execute per run. Since this executor launches a Kubernetes Job per Op, this also limits the number of concurrent Kuberenetes Jobs. Note that this limit is per run, not global. Thanks @kervel!
  • [Helm] Added a new externalConfigmap field as an alternative to dagit.workspace.servers when running the user deployments chart in a separate release. This allows the workspace to be managed outside of the main Helm chart. Thanks @peay!
  • Removed the pin on markupsafe<=2.0.1. Thanks @bollwyvl!

0.14.15#

New#

  • Sensors / schedules can now return a list of RunRequest objects instead of yielding them.
  • Repositories can now contain asset definitions and source assets for the same asset key.
  • OpExecutionContext (provided as the context argument to Ops) now has fields for, run, job_def, job_name, op_def, and op_config. These replace pipeline_run, pipeline_def, etc. (though they are still available).
  • When a job is partitioned using an hourly, daily, weekly, or monthly partitions definition, OpExecutionContext now offers a partition_time_window attribute, which returns a tuple of datetime objects that mark the bounds of the partition’s time window.
  • AssetsDefinition.from_graph now accepts a partitions_def argument.
  • [dagster-k8s] Removed an unnecessary dagster-test-connection pod from the Dagster Helm chart.
  • [dagster-k8s] The k8s_job_executor now polls the event log on a ~1 second interval (previously 0.1). Performance testing showed that this reduced DB load while not significantly impacting run time.
  • [dagit] Removed package pins for Jinja2 and nbconvert.
  • [dagit] When viewing a list of Runs, tags with information about schedules, sensors, and backfills are now more visually prominent and are sorted to the front of the list.
  • [dagit] The log view on Run pages now includes a button to clear the filter input.
  • [dagit] When viewing a list of Runs, you can now hover over a tag to see a menu with an option to copy the tag, and in filtered Run views, an option to add the tag to the filter.
  • [dagit] Configuration editors throughout Dagit now display clear indentation guides, and our previous whitespace indicators have been removed.
  • [dagit] The Dagit Content-Security-Policy has been moved from a <meta> tag to a response header, and several more security and privacy related headers have been added as well.
  • [dagit] Assets with multi-component key paths are always shown as foo/bar in dagit, rather than appearing as foo > bar in some contexts.
  • [dagit] The Asset graph now includes a “Reload definitions” button which reloads your repositories.
  • [dagit] On all DAGs, you can hold shift on the keyboard to switch from mouse wheel / touch pad zooming to panning. This makes it much easier to scroll horizontally at high speed without click-drag-click-drag-click-drag.
  • [dagit] a --log-level flag is now available in the dagit cli for controlling the uvicorn log level.
  • [dagster-dbt] The load_assets_from_dbt_project() and load_assets_from_dbt_manifest() utilities now have a use_build_command parameter. If this flag is set, when materializing your dbt assets, Dagster will use the dbt build command instead of dbt run. Any tests run during this process will be represented with AssetObservation events attached to the relevant assets. For more information on dbt build, see the dbt docs.
  • [dagster-dbt] If a dbt project successfully runs some models and then fails, AssetMaterializations will now be generated for the successful models.
  • [dagster-snowflake] The new Snowflake IO manager, which you can create using build_snowflake_io_manager offers a way to store assets and op outputs in Snowflake. The PandasSnowflakeTypeHandler stores Pandas DataFrames in Snowflake.
  • [helm] dagit.logLevel has been added to values.yaml to access the newly added dagit --log-level cli option.

Bugfixes#

  • Fixed incorrect text in the error message that’s triggered when building a job and an asset can’t be found that corresponds to one of the asset dependencies.
  • An error is no longer raised when an op/job/graph/other definition has an empty docstring.
  • Fixed a bug where pipelines could not be executed if toposort<=1.6 was installed.
  • [dagit] Fixed an issue in global search where rendering and navigation broke when results included objects of different types but with identical names.
  • [dagit] server errors regarding websocket send after close no longer occur.
  • [dagit] Fixed an issue where software-defined assets could be rendered improperly when the dagster and dagit versions were out of sync.

Community Contributions#

  • [dagster-aws] PickledObjectS3IOManager now uses list_objects to check the access permission. Thanks @trevenrawr!

Breaking Changes#

  • [dagster-dbt] The asset definitions produced by the experimental load_assets_from_dbt_project and load_assets_from_dbt_manifest functions now include the schemas of the dbt models in their asset keys. To revert to the old behavior: dbt_assets = load_assets_from_dbt_project(..., node_info_to_asset_key=lambda node_info: AssetKey(node_info["name"]).

Experimental#

  • The TableSchema API is no longer experimental.

Documentation#

  • Docs site now has a new design!
  • Concepts pages now have links to code snippets in our examples that use those concepts.

0.14.14#

New#

  • When viewing a config schema in the Dagit launchpad, default values are now shown. Hover over an underlined key in the schema view to see the default value for that key.
  • dagster, dagit, and all extension libraries (dagster-*) now contain py.typed files. This exposes them as typed libraries to static type checking tools like mypy. If your project is using mypy or another type checker, this may surface new type errors. For mypy, to restore the previous state and treat dagster or an extension library as untyped (i.e. ignore Dagster’s type annotations), add the following to your configuration file:
[mypy-dagster]  (or e.g. mypy-dagster-dbt)
follow_imports = "skip"
  • Op retries now surface the underlying exception in Dagit.
  • Made some internal changes to how we store schema migrations across our different storage implementations.
  • build_output_context now accepts an asset_key argument.
  • They key argument to the SourceAsset constructor now accepts values that are strings or sequences of strings and coerces them to AssetKeys.
  • You can now use the + operator to add two AssetGroups together, which forms an AssetGroup that contains a union of the assets in the operands.
  • AssetGroup.from_package_module, from_modules, from_package_name, and from_current_module now accept an extra_source_assets argument that includes a set of source assets into the group in addition to the source assets scraped from modules.
  • AssetsDefinition and AssetGroup now both expose a to_source_assets method that return SourceAsset versions of their assets, which can be used as source assets for downstream AssetGroups.
  • Repositories can now include multiple AssetGroups.
  • The new prefixed method on AssetGroup returns a new AssetGroup where a given prefix is prepended to the asset key of every asset in the group.
  • Dagster now has a BoolMetadataValue representing boolean-type metadata. Specifying True or False values in metadata will automatically be casted to the boolean type.
  • Tags on schedules can now be expressed as nested JSON dictionaries, instead of requiring that all tag values are strings.
  • If an exception is raised during an op, Dagster will now always run the failure hooks for that op. Before, certain system exceptions would prevent failure hooks from being run.
  • mapping_key can now be provided as an argument to build_op_context/build_solid_context. Doing so will allow the use of OpExecutionContext.get_mapping_key().

Bugfixes#

  • [dagit] Previously, when viewing a list of an asset’s materializations from a specified date/time, a banner would always indicate that it was a historical view. This banner is no longer shown when viewing the most recent materialization.
  • [dagit] Special cron strings like @daily were treated as invalid when converting to human-readable strings. These are now handled correctly.
  • The selection argument to AssetGroup.build_job now uses > instead of . for delimiting the components within asset keys, which is consistent with how selection works in Dagit.
  • [postgres] passwords and usernames are now correctly url quoted when forming a connection string. Previously spaces were replaced with +.
  • Fixed an issue where the celery_docker_executor would sometimes fail to execute with a JSON deserialization error when using Dagster resources that write to stdout.
  • [dagster-k8s] Fixed an issue where the Helm chart failed to work when the user code deployment subchart was used in a different namespace than the main dagster Helm chart, due to missing configmaps.
  • [dagster-airbyte] When a Dagster run is terminated while executing an Airbyte sync operation, the corresponding Airbyte sync will also be terminated.
  • [dagster-dbt] Log output from dbt cli commands will no longer have distracting color-formatting characters.
  • [dagit] Fixed issue where multi_assets would not show correct asset dependency information.
  • Fixed an issue with the sensor daemon, where the sensor would sometimes enter a race condition and overwrite the sensor status.

Community Contributions#

  • [dagster-graphql] The Python DagsterGraphQLClient now supports terminating in-progress runs using client.terminate_run(run_id). Thanks @Javier162380!

Experimental#

  • Added an experimental view of the Partitions page / Backfill page, gated behind a feature flag in Dagit.

0.14.13#

New#

  • [dagster-k8s] You can now specify resource requests and limits to the K8sRunLauncher when using the Dagster helm chart, that will apply to all runs. Before, you could only set resource configuration by tagging individual jobs. For example, you can set this config in your values.yaml file:
runLauncher:
  type: K8sRunLauncher
  config:
    k8sRunLauncher:
      resources:
        limits:
          cpu: 100m
          memory: 128Mi
        requests:
          cpu: 100m
          memory: 128Mi
  • [dagster-k8s] Specifying includeConfigInLaunchedRuns: true in a user code deployment will now launch runs using the same namespace and service account as the user code deployment.
  • The @asset decorator now accepts an op_tags argument, which allows e.g. providing k8s resource requirements on the op that computes the asset.
  • Added CLI output to dagster api grpc-health-check (previously it just returned via exit codes)
  • [dagster-aws] The emr_pyspark_step_launcher now supports dynamic orchestration, RetryPolicys defined on ops, and re-execution from failure. For failed steps, the stack trace of the root error will now be available in the event logs, as will logs generated with context.log.info.
  • Partition sets and can now return a nested dictionary in the tags_fn_for_partition function, instead of requiring that the dictionary have string keys and values.
  • [dagit] It is now possible to perform bulk re-execution of runs from the Runs page. Failed runs can be re-executed from failure.
  • [dagit] Table headers are now sticky on Runs and Assets lists.
  • [dagit] Keyboard shortcuts may now be disabled from User Settings. This allows users with certain keyboard layouts (e.g. QWERTZ) to inadvertently avoid triggering unwanted shortcuts.
  • [dagit] Dagit no longer continues making some queries in the background, improving performance when many browser tabs are open.
  • [dagit] On the asset graph, you can now filter for multi-component asset keys in the search bar and see the “kind” tags displayed on assets with a specified compute_kind.
  • [dagit] Repositories are now displayed in a stable order each time you launch Dagster.

Bugfixes#

  • [dagster-k8s] Fixed an issue where the Dagster helm chart sometimes failed to parse container images with numeric tags. Thanks @jrouly!
  • [dagster-aws] The EcsRunLauncher now registers new task definitions if the task’s execution role or task role changes.
  • Dagster now correctly includes setuptools as a runtime dependency.
  • In can now accept asset_partitions without crashing.
  • [dagit] Fixed a bug in the Launchpad, where default configuration failed to load.
  • [dagit] Global search now truncates the displayed list of results, which should improve rendering performance.
  • [dagit] When entering an invalid search filter on Runs, the user will now see an appropriate error message instead of a spinner and an alert about a GraphQL error.

Documentation#

  • Added documentation for partitioned assets
  • [dagster-aws] Fixed example code of a job using secretsmanager_resource.

0.14.12#

Bugfixes#

  • Fixed an issue where the Launchpad in Dagit sometimes incorrectly launched in an empty state.

0.14.11#

Bugfixes#

  • Fixed an issue where schedules created from partition sets that launched runs for multiple partitions in a single schedule tick would sometimes time out while generating runs in the scheduler.
  • Fixed an issue where nested graphs would sometimes incorrectly determine the set of required resources for a hook.

0.14.10#

New#

  • [dagster-k8s] Added an includeConfigInLaunchedRuns flag to the Helm chart that can be used to automatically include configmaps, secrets, and volumes in any runs launched from code in a user code deployment. See https://docs.dagster.io/deployment/guides/kubernetes/deploying-with-helm#configure-your-user-deployment for more information.
  • [dagit] Improved display of configuration yaml throughout Dagit, including better syntax highlighting and the addition of line numbers.
  • The GraphQL input argument type BackfillParams (used for launching backfills), now has an allPartitions boolean flag, which can be used instead of specifying all the individual partition names.
  • Removed gevent and gevent-websocket dependencies from dagster-graphql
  • Memoization is now supported while using step selection
  • Cleaned up various warnings across the project
  • The default IO Managers now support asset partitions

Bugfixes#

  • Fixed sqlite3.OperationalError error when viewing schedules/sensors pages in Dagit. This was affecting dagit instances using the default SQLite schedule storage with a SQLite version < 3.25.0.

  • Fixed an issues where schedules and sensors would sometimes fail to run when the daemon and dagit were running in different Python environments.

  • Fixed an exception when the telemetry file is empty

  • fixed a bug with @graph composition which would cause the wrong input definition to be used for type checks

  • [dagit] For users running Dagit with --path-prefix, large DAGs failed to render due to a WebWorker error, and the user would see an endless spinner instead. This has been fixed.

  • [dagit] Fixed a rendering bug in partition set selector dropdown on Launchpad.

  • [dagit] Fixed the ‘View Assets’ link in Job headers

  • Fixed an issue where root input managers with resource dependencies would not work with software defined assets

Community Contributions#

  • dagster-census is a new library that includes a census_resource for interacting the Census REST API, census_trigger_sync_op for triggering a sync and registering an asset once it has finished, and a CensusOutput type. Thanks @dehume!
  • Docs fix. Thanks @ascrookes!

0.14.9#

New#

  • Added a parameter in dagster.yaml that can be used to increase the time that Dagster waits when spinning up a gRPC server before timing out. For more information, see https://docs.dagster.io/deployment/dagster-instance#code-servers.
  • Added a new graphQL field assetMaterializations that can be queried off of a DagsterRun field. You can use this field to fetch the set of asset materialization events generated in a given run within a GraphQL query.
  • Docstrings on functions decorated with the @resource decorator will now be used as resource descriptions, if no description is explicitly provided.
  • You can now point dagit -m or dagit -f at a module or file that has asset definitions but no jobs or asset groups, and all the asset definitions will be loaded into Dagit.
  • AssetGroup now has a materialize method which executes an in-process run to materialize all the assets in the group.
  • AssetGroups can now contain assets with different partition_defs.
  • Asset materializations produced by the default asset IO manager, fs_asset_io_manager, now include the path of the file where the values were saved.
  • You can now disable the max_concurrent_runs limit on the QueuedRunCoordinator by setting it to -1. Use this if you only want to limit runs using tag_concurrency_limits.
  • [dagit] Asset graphs are now rendered asynchronously, which means that Dagit will no longer freeze when rendering a large asset graph.
  • [dagit] When viewing an asset graph, you can now double-click on an asset to zoom in, and you can use arrow keys to navigate between selected assets.
  • [dagit] The “show whitespace” setting in the Launchpad is now persistent.
  • [dagit] A bulk selection checkbox has been added to the repository filter in navigation or Instance Overview.
  • [dagit] A “Copy config” button has been added to the run configuration dialog on Run pages.
  • [dagit] An “Open in Launchpad” button has been added to the run details page.
  • [dagit] The Run page now surfaces more information about start time and elapsed time in the header.
  • [dagster-dbt] The dbt_cloud_resource has a new get_runs() function to get a list of runs matching certain paramters from the dbt Cloud API (thanks @kstennettlull!)
  • [dagster-snowflake] Added an authenticator field to the connection arguments for the snowflake_resource (thanks @swotai!).
  • [celery-docker] The celery docker executor has a new configuration entry container_kwargs that allows you to specify additional arguments to pass to your docker containers when they are run.

Bugfixes#

  • Fixed an issue where loading a Dagster repository would fail if it included a function to lazily load a job, instead of a JobDefinition.
  • Fixed an issue where trying to stop an unloadable schedule or sensor within Dagit would fail with an error.
  • Fixed telemetry contention bug on windows when running the daemon.
  • [dagit] Fixed a bug where the Dagit homepage would claim that no jobs or pipelines had been loaded, even though jobs appeared in the sidebar.
  • [dagit] When filtering runs by tag, tag values that contained the : character would fail to parse correctly, and filtering would therefore fail. This has been fixed.
  • [dagster-dbt] When running the “build” command using the dbt_cli_resource, the run_results.json file will no longer be ignored, allowing asset materializations to be produced from the resulting output.
  • [dagster-airbyte] Responses from the Airbyte API with a 204 status code (like you would get from /connections/delete) will no longer produce raise an error (thanks @HAMZA310!)
  • [dagster-shell] Fixed a bug where shell ops would not inherit environment variables if any environment variables were added for ops (thanks @kbd!)
  • [dagster-postgres] usernames are now urlqouted in addition to passwords

Documentation#

0.14.8#

New#

  • The MySQL storage implementations for Dagster storage is no longer marked as experimental.
  • run_id can now be provided as an argument to execute_in_process.
  • The text on dagit’s empty state no longer mentions the legacy concept “Pipelines”.
  • Now, within the IOManager.load_input method, you can add input metadata via InputContext.add_input_metadata. These metadata entries will appear on the LOADED_INPUT event and if the input is an asset, be attached to an AssetObservation. This metadata is viewable in dagit.

Bugfixes#

  • Fixed a set of bugs where schedules and sensors would get out of sync between dagit and dagster-daemon processes. This would manifest in schedules / sensors getting marked as “Unloadable” in dagit, and ticks not being registered correctly. The fix involves changing how Dagster stores schedule/sensor state and requires a schema change using the CLI command dagster instance migrate. Users who are not running into this class of bugs may consider the migration optional.
  • root_input_manager can now be specified without a context argument.
  • Fixed a bug that prevented root_input_manager from being used with VersionStrategy.
  • Fixed a race condition between daemon and dagit writing to the same telemetry logs.
  • [dagit] In dagit, using the “Open in Launchpad” feature for a run could cause server errors if the run configuration yaml was too long. Runs can now be opened from this feature regardless of config length.
  • [dagit] On the Instance Overview page in dagit, runs in the timeline view sometimes showed incorrect end times, especially batches that included in-progress runs. This has been fixed.
  • [dagit] In the dagit launchpad, reloading a repository should present the user with an option to refresh config that may have become stale. This feature was broken for jobs without partition sets, and has now been fixed.
  • Fixed issue where passing a stdlib typing type as dagster_type to input and output definition was incorrectly being rejected.
  • [dagster-airbyte] Fixed issue where AssetMaterialization events would not be generated for streams that had no updated records for a given sync.
  • [dagster-dbt] Fixed issue where including multiple sets of dbt assets in a single repository could cause a conflict with the names of the underlying ops.

0.14.7#

New#

  • [helm] Added configuration to explicitly enable or disable telemetry.
  • Added a new IO manager for materializing assets to Azure ADLS. You can specify this IO manager for your AssetGroups by using the following config:
`from dagster import AssetGroup
from dagster_azure import adls2_pickle_asset_io_manager, adls2_resource
asset_group = AssetGroup(
    [upstream_asset, downstream_asset],
    resource_defs={"io_manager": adls2_pickle_asset_io_manager, "adls2": adls2_resource}
)`
  • Added ability to set a custom start time for partitions when using @hourly_partitioned_config , @daily_partitioned_config, @weekly_partitioned_config, and @monthly_partitioned_config
  • Run configs generated from partitions can be retrieved using the PartitionedConfig.get_run_config_for_partition_key function. This will allow the use of the validate_run_config function in unit tests.
  • [dagit] If a run is re-executed from failure, and the run fails again, the default action will be to re-execute from the point of failure, rather than to re-execute the entire job.
  • PartitionedConfig now takes an argument tags_for_partition_fn which allows for custom run tags for a given partition.

Bugfixes#

  • Fixed a bug in the message for reporting Kubernetes run worker failures
  • [dagit] Fixed issue where re-executing a run that materialized a single asset could end up re-executing all steps in the job.
  • [dagit] Fixed issue where the health of an asset’s partitions would not always be up to date in certain views.
  • [dagit] Fixed issue where the “Materialize All” button would be greyed out if a job had SourceAssets defined.

Documentation#

  • Updated resource docs to reference “ops” instead of “solids” (thanks @joe-hdai!)
  • Fixed formatting issues in the ECS docs

0.14.6#

New#

  • Added IO manager for materializing assets to GCS. You can specify the GCS asset IO manager by using the following config for resource_defs in AssetGroup:
`from dagster import AssetGroup, gcs_pickle_asset_io_manager, gcs_resource
asset_group = AssetGroup(
    [upstream_asset, downstream_asset],
    resource_defs={"io_manager": gcs_pickle_asset_io_manager, "gcs": gcs_resource}
)`
  • Improved the performance of storage queries run by the sensor daemon to enforce the idempotency of run keys. This should reduce the database CPU when evaluating sensors with a large volume of run requests with run keys that repeat across evaluations.
  • [dagit] Added information on sensor ticks to show when a sensor has requested runs that did not result in the creation of a new run due to the enforcement of idempotency using run keys.
  • [k8s] Run and step workers are now labeled with the Dagster run id that they are currently handling.
  • If a step launched with a StepLauncher encounters an exception, that exception / stack trace will now appear in the event log.

Bugfixes#

  • Fixed a race condition where canceled backfills would resume under certain conditions.
  • Fixed an issue where exceptions that were raised during sensor and schedule execution didn’t always show a stack trace in Dagit.
  • During execution, dependencies will now resolve correctly for certain dynamic graph structures that were previously resolving incorrectly.
  • When using the forkserver start_method on the multiprocess executor, preload_modules have been adjusted to prevent libraries that change namedtuple serialization from causing unexpected exceptions.
  • Fixed a naming collision between dagster decorators and submodules that sometimes interfered with static type checkers (e.g. pyright).
  • [dagit] postgres database connection management has improved when watching actively executing runs
  • [dagster-databricks] The databricks_pyspark_step_launcher now supports steps with RetryPolicies defined, as well as RetryRequested exceptions.

Community Contributions#

  • Docs spelling fixes - thanks @antquinonez!

0.14.5#

Bugfixes#

  • [dagit] Fixed issue where sensors could not be turned on/off in dagit.
  • Fixed a bug with direct op invocation when used with funcsigs.partial that would cause incorrect InvalidInvocationErrors to be thrown.
  • Internal code no longer triggers deprecation warnings for all runs.

0.14.4#

New#

  • Dagster now supports non-standard vixie-style cron strings, like @hourly, @daily, @weekly, and @monthly in addition to the standard 5-field cron strings (e.g. * * * * *).
  • value is now an alias argument of entry_data (deprecated) for the MetadataEntry constructor.
  • Typed metadata can now be attached to SourceAssets and is rendered in dagit.
  • When a step fails to upload its compute log to Dagster, it will now add an event to the event log with the stack trace of the error instead of only logging the error to the process output.
  • [dagit] Made a number of improvements to the Schedule/Sensor pages in Dagit, including showing a paginated table of tick information, showing historical cursor state, and adding the ability to set a cursor from Dagit. Previously, we only showed tick information on the timeline view and cursors could only be set using the dagster CLI.
  • [dagit] When materializing assets, Dagit presents a link to the run rather than jumping to it, and the status of the materialization (pending, running, failed) is shown on nodes in the asset graph.
  • [dagit] Dagit now shows sensor and schedule information at the top of asset pages based on the jobs in which the asset appears.
  • [dagit] Dagit now performs "middle truncation" on gantt chart steps and graph nodes, making it much easier to differentiate long assets and ops.
  • [dagit] Dagit no longer refreshes data when tabs are in the background, lowering browser CPU usage.
  • dagster-k8s, dagster-celery-k8s, and dagster-docker now name step workers dagster-step-... rather than dagster-job-....
  • [dagit] The launchpad is significantly more responsive when you're working with very large partition sets.
  • [dagit] We now show an informative message on the Asset catalog table when there are no matching assets to display. Previously, we would show a blank white space.
  • [dagit] Running Dagit without a backfill daemon no longer generates a warning unless queued backfills are present. Similarly, a missing sensor or schedule daemon only yields a warning if sensors or schedules are turned on.
  • [dagit] On the instance summary page, hovering over a recent run’s status dot shows a more helpful tooltip.
  • [dagster-k8s] Improved performance of the k8s_job_executor for runs with many user logs
  • [dagster-k8s] When using the dagster-k8s/config tag to configure Dagster Kubernetes pods, the tags can now accept any valid Kubernetes config, and can be written in either snake case (node_selector_terms) or camel case (nodeSelectorTerms). See the docs for more information.
  • [dagster-aws] You can now set secrets on the EcsRunLauncher using the same syntax that you use to set secrets in the ECS API.
  • [dagster-aws] The EcsRunLauncher now attempts to reuse task definitions instead of registering a new task definition for every run.
  • [dagster-aws] The EcsRunLauncher now raises the underlying ECS API failure if it cannot successfully start a task.

Software-Defined Assets#

  • When loading assets from modules using AssetGroup.from_package_name and similar methods, lists of assets at module scope are now loaded.
  • Added the static methods AssetGroup.from_modules and AssetGroup.from_current_module, which automatically load assets at module scope from particular modules.
  • Software-defined assets jobs can now load partitioned assets that are defined outside the job.
  • AssetGraph.from_modules now correctly raises an error if multiple assets with the same key are detected.
  • The InputContext object provided to IOManager.load_input previously did not include resource config. Now it does.
  • Previously, if an assets job had a partitioned asset as well as a non-partitioned asset that depended on another non-partitioned asset, it would fail to run. Now it runs without issue.
  • [dagit] The asset "View Upstream Graph" links no longer select the current asset, making it easier to click "Materialize All".
  • [dagit] The asset page's "partition health bar" highlights missing partitions better in large partition sets.
  • [dagit] The asset "Materialize Partitions" modal now presents an error when partition config or tags cannot be generated.
  • [dagit] The right sidebar of the global asset graph no longer defaults to 0% wide in fresh / incognito browser windows, which made it difficult to click nodes in the global graph.
  • [dagit] In the asset catalog, the search bar now matches substrings so it's easier to find assets with long path prefixes.
  • [dagit] Dagit no longer displays duplicate downstream dependencies on the Asset Details page in some scenarios.
  • [dagster-fivetran] Assets created using build_fivetran_assets will now be properly tagged with a fivetran pill in Dagit.

Bugfixes#

  • Fixed issue causing step launchers to fail in many scenarios involving re-execution or dynamic execution.
  • Previously, incorrect selections (generally, step selections) could be generated for strings of the form ++item. This has been fixed.
  • Fixed an issue where run status sensors sometimes logged the wrong status to the event log if the run moved into a different status while the sensor was running.
  • Fixed an issue where daily schedules sometimes produced an incorrect partition name on spring Daylight Savings time boundaries.
  • [dagit] Certain workspace or repo-scoped pages relied on versions of the SQLAlchemy package to be 1.4 or greater to be installed. We are now using queries supported by SQLAlchemy>=1.3. Previously we would raise an error including the message: 'Select' object has no attribute 'filter'.
  • [dagit] Certain workspace or repo-scoped pages relied on versions of sqlite to be 3.25.0 or greater to be installed. This has been relaxed to support older versions of sqlite. This was previously marked as fixed in our 0.14.0 notes, but a handful of cases that were still broken have now been fixed. Previously we would raise an error (sqlite3.OperationalError).
  • [dagit] When changing presets / partitions in the launchpad, Dagit preserves user-entered tags and replaces only the tags inherited from the previous base.
  • [dagit] Dagit no longer hangs when rendering the run gantt chart for certain graph structures.
  • [dagster-airbyte] Fixed issues that could cause failures when generating asset materializations from an Airbyte API response.
  • [dagster-aws] 0.14.3 removed the ability for the EcsRunLauncher to use sidecars without you providing your own custom task definition. Now, you can continue to inherit sidecars from the launching task’s task definition by setting include_sidecars: True in your run launcher config.

Breaking Changes#

  • dagster-snowflake has dropped support for python 3.6. The library it is currently built on, snowflake-connector-python, dropped 3.6 support in their recent 2.7.5 release.

Community Contributions#

  • MetadataValue.path() and PathMetadataValue now accept os.PathLike objects in addition to strings. Thanks@abkfenris!
  • [dagster-k8s] Fixed configuration of env_vars on the k8s_job_executor. Thanks @kervel!
  • Typo fix on the Create a New Project page. Thanks @frcode!

Documentation#

  • Concepts sections added for Op Retries and Dynamic Graphs
  • The Hacker News Assets demo now uses AssetGroup instead of build_assets_job, and it can now be run entirely from a local machine with no additional infrastructure (storing data inside DuckDB).
  • The Software-Defined Assets guide in the docs now uses AssetGroup instead of build_assets_job.

0.14.3#

New#

  • When using an executor that runs each op in its own process, exceptions in the Dagster system code that result in the op process failing will now be surfaced in the event log.
  • Introduced new SecretsManager resources to the dagster-aws package to enable loading secrets into Jobs more easily. For more information, seethe documentation.
  • Daemon heartbeats are now processed in a batch request to the database.
  • Job definitions now contain a method called run_request_for_partition, which returns a RunRequest that can be returned in a sensor or schedule evaluation function to launch a run for a particular partition for that job. See our documentation for more information.
  • Renamed the filter class from PipelineRunsFilter => RunsFilter.
  • Assets can now be directly invoked for unit testing.
  • [dagster-dbt] load_assets_from_dbt_project will now attach schema information to the generated assets if it is available in the dbt project (schema.yml).
  • [examples] Added an example that demonstrates using Software Defined Assets with Airbyte, dbt, and custom Python.
  • The default io manager used in the AssetGroup api is now the fs_asset_io_manager.
  • It's now possible to build a job where partitioned assets depend on partitioned assets that are maintained outside the job, and for those upstream partitions to show up on the context in the op and IOManager load_input function.
  • SourceAssets can now be partitioned, by setting the partitions_def argument.

Bugfixes#

  • Fixed an issue where run status sensors would sometimes fire multiple times for the same run if the sensor function raised an error.
  • [ECS] Previously, setting cpu/memory tags on a job would override the ECS task’s cpu/memory, but not individual containers. If you were using a custom task definition that explicitly sets a container’s cpu/memory, the container would not resize even if you resized the task. Now, setting cpu/memory tags on a job overrides both the ECS task’s cpu/memory and the container's cpu/memory.
  • [ECS] Previously, if the EcsRunLauncher launched a run from a task with multiple containers - for example if both dagit and daemon were running in the same task - then the run would be launched with too many containers. Now, the EcsRunLauncher only launches tasks with a single container.
  • Fixed an issue where the run status of job invoked through execute_in_process was not updated properly.
  • Fixed some storage queries that were incompatible with versions of SQLAlchemy<1.4.0.
  • [dagster-dbt] Fixed issue where load_assets_from_dbt_project would fail if models were organized into subdirectories.
  • [dagster-dbt] Fixed issue where load_assets_from_dbt_project would fail if seeds or snapshots were present in the project.

Community Contributions#

  • [dagster-fivetran] A new fivetran_resync_op (along with a corresponding resync_and_poll method on the fivetran_resource) allows you to kick off Fivetran resyncs using Dagster (thanks @dwallace0723!)

  • [dagster-shell] Fixed an issue where large log output could cause operations to hang (thanks @kbd!)

  • [documentation] Fixed export message with dagster home path (thanks @proteusiq)!

  • [documentation] Remove duplicate entries under integrations (thanks @kahnwong)!

UI#

  • Added a small toggle to the right of each graph on the asset details page, allowing them to be toggled on and off.
  • Full asset paths are now displayed on the asset details page.

Documentation#

  • Added API doc entries for validate_run_config.
  • Fixed the example code for the reexecute_pipeline API.
  • TableRecord, TableSchema and its constituents are now documented in the API docs.
  • Docs now correctly use new metadata names MetadataEntry and MetadataValue instead of old ones.

0.14.2#

New#

  • Run status sensors can now be invoked in unit tests. Added build_run_status_sensor_context to help build context objects for run status sensors

Bugfixes#

  • An issue preventing the use of default_value on inputs has been resolved. Previously, a defensive error that did not take default_value in to account was thrown.
  • [dagster-aws] Fixed issue where re-emitting log records from the pyspark_step_launcher would occasionally cause a failure.
  • [dagit] The asset catalog now displays entries for materialized assets when only a subset of repositories were selected. Previously, it only showed the software-defined assets unless all repositories were selected in Dagit.

Community Contributions#

  • Fixed an invariant check in the databricks step launcher that was causing failures when setting the local_dagster_job_package_path config option (Thanks Iswariya Manivannan!)

Documentation#

  • Fixed the example code in the reconstructable API docs.

0.14.1#

New#

  • [dagit] The sensor tick timeline now shows cursor values in the tick tooltip if they exist.

Bugfixes#

  • Pinned dependency on markupsafe to function with existing Jinja2 pin.
  • Sensors that have a default status can now be manually started. Previously, this would fail with an invariant exception.

0.14.0 “Never Felt Like This Before”#

Major Changes#

  • Software-defined assets, which offer a declarative approach to data orchestration on top of Dagster’s core job/op/graph APIs, have matured significantly. Improvements include partitioned assets, a revamped asset details page in Dagit, a cross-repository asset graph view in Dagit, Dagster types on assets, structured metadata on assets, and the ability to materialize ad-hoc selections of assets without defining jobs. Users can expect the APIs to only undergo minor changes before being declared fully stable in Dagster’s next major release. For more information, view the software-defined assets concepts page here.

  • We’ve made it easier to define a set of software-defined assets where each Dagster asset maps to a dbt model. All of the dependency information between the dbt models will be reflected in the Dagster asset graph, while still running your dbt project in a single step.

  • Dagit has a new homepage, dubbed the “factory floor” view, that provides an overview of recent runs of all the jobs. From it, you can monitor the status of each job’s latest run or quickly re-execute a job. The new timeline view reports the status of all recent runs in a convenient gantt chart.

  • You can now write schedules and sensors that default to running as soon as they are loaded in your workspace, without needing to be started manually in Dagit. For example, you can create a sensor like this:

    from dagster import sensor, DefaultSensorStatus
    
    @sensor(job=my_job, default_status=DefaultSensorStatus.RUNNING)
    def my_running_sensor():
        ...
    

    or a schedule like this:

    from dagster import schedule, DefaultScheduleStatus, ScheduleEvaluationContext
    
    @schedule(job=my_job, cron_schedule="0 0 * * *", default_status=DefaultScheduleStatus.RUNNING)
    def my_running_schedule(context: ScheduleEvaluationContext):
        ...
    

    As soon as schedules or sensors with the default_status field set to RUNNING are included in the workspace loaded by your Dagster Daemon, they will begin creating ticks and submitting runs.

  • Op selection now supports selecting ops inside subgraphs. For example, to select an op my_op inside a subgraph my_graph, you can now specify the query as my_graph.my_op. This is supported in both Dagit and Python APIs.

  • Dagster Types can now have attached metadata. This allows TableSchema objects to be attached to Dagster Types via TableSchemaMetadata. A Dagster Type with a TableSchema will have the schema rendered in Dagit.

  • A new Pandera integration (dagster-pandera) allows you to use Pandera’s dataframe validation library to wrap dataframe schemas in Dagster types. This provides two main benefits: (1) Pandera’s rich schema validation can be used for runtime data validation of Pandas dataframes in Dagster ops/assets; (2) Pandera schema information is displayed in Dagit using a new TableSchema API for representing arbitrary table schemas.

  • The new AssetObservation event enables recording metadata about an asset without indicating that the asset has been updated.

  • AssetMaterializations, ExpectationResults, and AssetObservations can be logged via the context of an op using the OpExecutionContext.log_event method. Output metadata can also be logged using the OpExecutionContext.add_output_metadata method. Previously, Dagster expected these events to be yielded within the body of an op, which caused lint errors for many users, made it difficult to add mypy types to ops, and also forced usage of the verbose Output API. Here’s an example of the new invocations:

    from dagster import op, AssetMaterialization
    
    @op
    def the_op(context):
        context.log_event(AssetMaterialization(...))
        context.add_output_metadata({"foo": "bar"})
        ...
    
  • A new Airbyte integration (dagster-airbyte) allows you to kick off and monitor Airbyte syncs from within Dagster. The original contribution from @airbytehq’s own @marcosmarxm includes a resource implementation as well as a pre-built op for this purpose, and we’ve extended this library to support software-defined asset use cases as well. Regardless of which interface you use, Dagster will automatically capture the Airbyte log output (in the compute logs for the relevant steps) and track the created tables over time (via AssetMaterializations).

  • The ECSRunLauncher (introduced in Dagster 0.11.15) is no longer considered experimental. You can bootstrap your own Dagster deployment on ECS using our docker compose example or you can use it in conjunction with a managed Dagster Cloud deployment. Since its introduction, we’ve added the ability to customize Fargate container memory and CPU, mount secrets from AWS SecretsManager, and run with a variety of AWS networking configurations. Join us in #dagster-ecs in Slack!

  • [Helm] The default liveness and startup probes for Dagit and user deployments have been replaced with readiness probes. The liveness and startup probe for the Daemon has been removed. We observed and heard from users that under load, Dagit could fail the liveness probe which would result in the pod restarting. With the new readiness probe, the pod will not restart but will stop serving new traffic until it recovers. If you experience issues with any of the probe changes, you can revert to the old behavior by specifying liveness and startup probes in your Helm values (and reach out via an issue or Slack).

Breaking Changes and Deprecations#

  • The Dagster Daemon now uses the same workspace.yaml file as Dagit to locate your Dagster code. You should ensure that if you make any changes to your workspace.yaml file, they are included in both Dagit’s copy and the Dagster Daemon’s copy. When you make changes to the workspace.yaml file, you don’t need to restart either Dagit or the Dagster Daemon - in Dagit, you can reload the workspace from the Workspace tab, and the Dagster Daemon will periodically check the workspace.yaml file for changes every 60 seconds. If you are using the Dagster Helm chart, no changes are required to include the workspace in the Dagster Daemon.

  • Dagster’s metadata API has undergone a signficant overhaul. Changes include:

    • To reflect the fact that metadata can be specified on definitions in addition to events, the following names are changing. The old names are deprecated, and will function as aliases for the new names until 0.15.0:
      • EventMetadata > MetadataValue
      • EventMetadataEntry > MetadataEntry
      • XMetadataEntryData > XMetadataValue (e.g. TextMetadataEntryData > TextMetadataValue)
    • The metadata_entries keyword argument to events and Dagster types is deprecated. Instead, users should use the metadata keyword argument, which takes a dictionary mapping string labels to MetadataValues.
    • Arbitrary metadata on In/InputDefinition and Out/OutputDefinition is deprecated. In 0.15.0, metadata passed for these classes will need to be resolvable to MetadataValue (i.e. function like metadata everywhere else in Dagster).
    • The description attribute of EventMetadataEntry is deprecated.
    • The static API of EventMetadataEntry (e.g. EventMetadataEntry.text) is deprecated. In 0.15.0, users should avoid constructing EventMetadataEntry objects directly, instead utilizing the metadata dictionary keyword argument, which maps string labels to MetadataValues.
  • In previous releases, it was possible to supply either an AssetKey, or a function that produced an AssetKey from an OutputContext as the asset_key argument to an Out/OutputDefinition. The latter behavior makes it impossible to gain information about these relationships without running a job, and has been deprecated. However, we still support supplying a static AssetKey as an argument.

  • We have renamed many of the core APIs that interact with ScheduleStorage, which keeps track of sensor/schedule state and ticks. The old term for the generic schedule/sensor “job” has been replaced by the term “instigator” in order to avoid confusion with the execution API introduced in 0.12.0. If you have implemented your own schedule storage, you may need to change your method signatures appropriately.

  • Dagit is now powered by Starlette instead of Flask. If you have implemented a custom run coordinator, you may need to make the following change:

    from flask import has_request_context, request
    
    def submit_run(self, context: SubmitRunContext) -> PipelineRun:
        jwt_claims_header = (
            request.headers.get("X-Amzn-Oidc-Data", None) if has_request_context() else None
        )
    

    Should be replaced by:

    def submit_run(self, context: SubmitRunContext) -> PipelineRun:
        jwt_claims_header = context.get_request_header("X-Amzn-Oidc-Data")
    
  • Dagit

    • Dagit no longer allows non-software-defined asset materializations to be be graphed or grouped by partition. This feature could render in incorrect / incomplete ways because no partition space was defined for the asset.
    • Dagit’s “Jobs” sidebar now collapses by default on Instance, Job, and Asset pages. To show the left sidebar, click the “hamburger” icon in the upper left.
    • “Step Execution Time” is no longer graphed on the asset details page in Dagit, which significantly improves page load time. To view this graph, go to the asset graph for the job, uncheck “View as Asset Graph” and click the step to view its details.
    • The “experimental asset UI” feature flag has been removed from Dagit, this feature is shipped in 0.14.0!
  • The Dagster Daemon now requires a workspace.yaml file, much like Dagit.

  • Ellipsis (“...”) is now an invalid substring of a partition key. This is because Dagit accepts an ellipsis to specify partition ranges.

  • [Helm] The Dagster Helm chart now only supported Kubernetes clusters above version 1.18.

New since 0.13.19#

  • Software Defined Assets:

    • In Dagit, the Asset Catalog now offers a third display mode - a global graph of your software-defined assets.

    • The Asset Catalog now allows you to filter by repository to see a subset of your assets, and offers a “View in Asset Graph” button for quickly seeing software-defined assets in context.

    • The Asset page in Dagit has been split into two tabs, “Activity” and “Definition”.

    • Dagit now displays a warning on the Asset page if the most recent run including the asset’s step key failed without yielding a materialization, making it easier to jump to error logs.

    • Dagit now gives you the option to view jobs with software-defined assets as an Asset Graph (default) or as an Op Graph, and displays asset <-> op relationships more prominently when a single op yields multiple assets.

    • You can now include your assets in a repository with the use of an AssetGroup. Each repository can only have one AssetGroup, and it can provide a jumping off point for creating the jobs you plan on using from your assets.

      from dagster import AssetGroup, repository, asset
      
      @asset(required_resource_keys={"foo"})
      def asset1():
          ...
      
      @asset
      def asset2():
          ...
      
      @repository
      def the_repo():
          asset_group = AssetGroup(assets=[asset1, asset2], resource_defs={"foo": ...})
          return [asset_group, asset_group.build_job(selection="asset1-")]
      
    • AssetGroup.build_job supports a selection syntax similar to that found in op selection.

  • Asset Observations:

    • You can now yield AssetObservations to log metadata about a particular asset from beyond its materialization site. AssetObservations appear on the asset details page alongside materializations and numerical metadata is graphed. For assets with software-defined partitions, materialized and observed metadata about each partition is rolled up and presented together. For more information, view the docs page here.
    • Added an asset_observations_for_node method to ExecuteInProcessResult for fetching the AssetObservations from an in-process execution.
  • Dagster Types with an attached TableSchemaMetadataValue now render the schema in Dagit UI.

  • [dagster-pandera] New integration library dagster-pandera provides runtime validation from the Pandera dataframe validation library and renders table schema information in Dagit.

  • OpExecutionContext.log_event provides a way to log AssetMaterializations, ExpectationResults, and AssetObservations from the body of an op without having to yield anything. Likewise, you can use OpExecutionContext.add_output_metadata to attach metadata to an output without having to explicitly use the Output object.

  • OutputContext.log_event provides a way to log AssetMaterializations from within the handle_output method of an IO manager without yielding. Likewise, output metadata can be added using OutputContext.add_output_metadata.

  • [dagster-dbt] The load_assets_from_dbt_project function now returns a set of assets that map to a single dbt run command (rather than compiling each dbt model into a separate step). It also supports a new node_info_to_asset_key argument which allows you to customize the asset key that will be used for each dbt node.

  • [dagster-airbyte] The dagster-airbyte integration now collects the Airbyte log output for each run as compute logs, and generates AssetMaterializations for each table that Airbyte updates or creates.

  • [dagster-airbyte] The dagster-airbyte integration now supports the creation of software-defined assets, with the build_airbyte_assets function.

  • [dagster-fivetran] The dagster-fivetran integration now supports the creation of software-defined assets with the build_fivetran_assets function.

  • The multiprocess executor now supports choosing between spawn or forkserver for how its subprocesses are created. When using forkserver we attempt to intelligently preload modules to reduce the per-op overhead.

  • [Helm] Labels can now be set on the Dagit and daemon deployments.

  • [Helm] The default liveness and startup probes for Dagit and user deployments have been replaced with readiness probes. The liveness and startup probe for the Daemon has been removed. We observed and heard from users that under load, Dagit could fail the liveness probe which would result in the pod restarting. With the new readiness probe, the pod will not restart but will stop serving new traffic until it recovers. If you experience issues with any of the probe changes, you can revert to the old behavior by specifying liveness and startup probes in your Helm values (and reach out via an issue or Slack).

  • [Helm] The Ingress v1 is now supported.

Community Contributions#

  • Typo fix from @jiafi, thank you!

Bugfixes#

  • Fixed an issue where long job names were truncated prematurely in the Jobs page in Dagit.
  • Fixed an issue where loading the sensor timeline would sometimes load slowly or fail with a timeout error.
  • Fixed an issue where the first time a run_status_sensor executed, it would sometimes run very slowly or time out.
  • Fixed an issue where Launchpad mistakenly defaulted with invalid subset error in Dagit.
  • Multi-component asset keys can now be used in the asset graph filter bar.
  • Increased the storage query statement timeout to better handle more complex batch queries.
  • Added fallback support for older versions of sqlite to service top-level repository views in Dagit (e.g. the top-level jobs, schedule, and sensor pages).

Documentation#

  • Images in the documentation now enlarge when clicked.
  • New example in examples/bollinger demonstrates dagster-pandera and TableSchema , and software-defined assets in the context of analyzing stock price data.

0.13.19#

New#

  • [dagit] Various performance improvements for asset graph views.
  • [dagster-aws] The EcsRunLauncher can now override the secrets_tag parameter to None, which will cause it to not look for any secrets to be included in the tasks for the run. This can be useful in situations where the run launcher does not have permissions to query AWS Secretsmanager.

Bugfixes#

  • [dagster-mysql] For instances using MySQL for their run storage, runs created using dagster versions 0.13.17 / 0.13.18 might display an incorrect timestamp for its start time on the Runs page. Running the dagster instance migrate CLI command should resolve the issue.

0.13.18#

New#

  • Op selection now supports selecting ops inside subgraphs. For example, to select an op my_op inside a subgraph my_graph, you can now specify the query as "my_graph.my_op".
  • The error message raised on failed Dagster type check on an output now includes the description provided on the TypeCheck object.
  • The dagster asset wipe CLI command now takes a --noprompt option.
  • Added the new Map config type, used to represent mappings between arbitrary scalar keys and typed values. For more information, see the Map ConfigType docs.
  • build_resources has been added to the top level API. It provides a way to initialize resources outside of execution. This provides a way to use resources within the body of a sensor or schedule: https://github.com/dagster-io/dagster/issues/3794
  • The dagster-daemon process now creates fewer log entries when no actions are taken (for example, if the run queue is empty)
  • [dagster-k8s] When upgrading the Dagster helm chart, the old dagster-daemon pod will now spin down completely before the new dagster-daemon pod is started.
  • [dagster-k8s] A flag can now be set in the Dagster helm chart to control whether the Kubernetes Jobs and Pods created by the K8sRunLauncher should fail if the Dagster run fails. To enable this flag, set the `failPodOnRunFailure key to true in the run launcher portion of the Helm chart.
  • [dagster-dbt] Fixed compatibility issues with dbt 1.0. The schema and data arguments on the DbtCliResource.test function no longer need to be set to False to avoid errors, and the dbt output will be no longer be displayed in json format in the event logs.
  • Dagster Types can now have metadata entries attached to them.
  • DagsterGraphQLClient now supports submitting runs with op/solid sub-selections.
  • [dagit] The Asset Catalog view will now include information from both AssetMaterializations and AssetObservation events for each asset.
  • [dagit][software-defined-assets] A warning will now be displayed if you attempt to backfill partitions of an asset whose upstream dependencies are missing.

Bugfixes#

  • When Dagit fails to load a list of ops, the error message used the legacy term “solids”. Now it uses “ops”.
  • Runs created using dagster versions 0.13.15 / 0.13.16 / 0.13.17 might display an incorrect timestamp for its start time on the Runs page. This would only happen if you had run a schema migration (using one of those versions) with the dagster instance migrate CLI command. Running the dagster instance reindex command should run a data migration that resolves this issue.
  • When attempting to invoke run status sensors or run failure sensors, it will now incur an error. Run status/failure sensor invocation is not yet supported.
  • [dagster-k8s] Fixed a bug in the sanitization of K8s label values with uppercase characters and underscores

Community Contributions#

  • [software-defined-assets] Language in dagit has been updated from “refreshing” to “rematerializing” assets (thanks @Sync271!)
  • [docs] The changelog page is now mobile friendly (thanks @keyz!)
  • [docs] The loading shimmer for text on docs pages now has correct padding (also @keyz!)

Experimental#

  • [software-defined-assets] The namespace argument of the @asset decorator now accepts a list of strings in addition to a single string.
  • [memoization] Added a missing space to the error thrown when trying to use memoization without a persistent Dagster instance.
  • [metadata] Two new metadata types, TableSchemaMetadataEntryData and TableMetadataEntryData allow you to emit metadata representing the schema / contents of a table, to be displayed in Dagit.

0.13.17#

New#

  • When a user-generated context.log call fails while writing to the event log, it will now log a system error in the event log instead of failing the run.
  • [dagit] Made performance improvements to the Runs page, which can be realized after running an optional storage schema migration using dagster instance migrate.
  • When a job is created from a graph, it will now use the graph’s description if a description is not explicitly provided to override it. (Thanks @AndreaGiardini!)
  • [dagit] Log job names are now truncated in Dagit.
  • [dagit] The execution timezone is shown beside schedule cron strings, since their timezone may be UTC or a custom value.
  • [dagit] Graph filter inputs now default to using quoted strings, and this syntax matches ops, steps, or assets via an exact string match. "build_table"+ will select that asset and it's downstream children without selecting another containing that string, such as build_table_result. Removing the quotes provides the old string matching behavior
  • [dagster-aws] When using the emr_pyspark_step_launcher to run Dagster ops in an Amazon EMR cluster, the raw stdout output of the Spark driver is now written to stdout and will appear in the compute logs for the op in dagit, rather than being written to the Dagster event log.
  • [dagit] Improved performance loading the Asset entry page in Dagit.

Bugfixes#

  • [dagster-mysql] Added a schema migration script that was mistakenly omitted from 0.13.16. Migrating instance storage using dagster instance migrate should now complete without error.
  • [dagster-airbyte] Fixed a packaging dependency issue with dagster-airbyte. (Thanks bollwyvl!)
  • Fixed a bug where config provided to the config arg on to_job required environment variables to exist at definition time.
  • [dagit] The asset graph view now supports ops that yield multiple assets and renders long asset key paths correctly.
  • [dagit] The asset graph’s filter input now allows you to filter on assets with multi-component key paths.
  • [dagit] The asset graph properly displays downstream asset links to other asset jobs in your workspace.

Experimental#

  • [dagster-celery-k8s] Experimental run monitoring is now supported with the CeleryK8sRunLauncher. This will detect when a run worker K8s Job has failed (due to an OOM, a Node shutting down, etc.) and mark the run as failed so that it doesn’t hang in STARTED. To enable this feature, set dagsterDaemon.runMonitoring.enabled to true in your Helm values.

Documentation#

  • [dagster-snowflake] Fixed some example code in the API doc for snowflake_resource, which incorrectly constructed a Dagster job using the snowflake resource.

0.13.16#

New#

  • Added an integration with Airbyte, under the dagster-airbyte package (thanks Marcos Marx).
  • An op that has a config schema is no longer required to have a context argument.

Bugfixes#

  • Fixed an issue introduced in 0.13.13 where jobs with DynamicOutputs would fail when using the k8s_job_executor due to a label validation error when creating the step pod.
  • In Dagit, when searching for asset keys on the Assets page, string matches beyond a certain character threshold on deeply nested key paths were ignored. This has been fixed, and all keys in the asset path are now searchable.
  • In Dagit, links to Partitions views were broken in several places due to recent URL querystring changes, resulting in page crashes due to JS errors. These links have been fixed.
  • The “Download Debug File” menu link is fixed on the Runs page in Dagit.
  • In the “Launch Backfill” dialog on the Partitions page in Dagit, the range input sometimes discarded user input due to page updates. This has been fixed. Additionally, pressing the return key now commits changes to the input.
  • When using a mouse wheel or touchpad gestures to zoom on a DAG view for a job or graph in Dagit, the zoom behavior sometimes was applied to the entire browser instead of just the DAG. This has been fixed.
  • Dagit fonts now load correctly when using the --path-prefix option.
  • Date strings in tool tips on time-based charts no longer duplicate the meridiem indicator.

Experimental#

  • Software-defined assets can now be partitioned. The @asset decorator has a partitions_def argument, which accepts a PartitionsDefinition value. The asset details page in Dagit now represents which partitions are filled in.

Documentation#

  • Fixed the documented return type for the sync_and_poll method of the dagster-fivetran resource (thanks Marcos Marx).
  • Fixed a typo in the Ops concepts page (thanks Oluwashina Aladejubelo).

0.13.14#

New#

  • When you produce a PartitionedConfig object using a decorator like daily_partitioned_config or static_partitioned_config, you can now directly invoke that object to invoke the decorated function.
  • The end_offset argument to PartitionedConfig can now be negative. This allows you to define a schedule that fills in partitions further in the past than the current partition (for example, you could define a daily schedule that fills in the partition from two days ago by setting end_offset to -1.
  • The runConfigData argument to the launchRun GraphQL mutation can now be either a JSON-serialized string or a JSON object , instead of being required to be passed in as a JSON object. This makes it easier to use the mutation in typed languages where passing in unserialized JSON objects as arguments can be cumbersome.
  • Dagster now always uses the local working directory when resolving local imports in job code, in all workspaces. In the case where you want to use a different base folder to resolve local imports in your code, the working_directory argument can now always be specified (before, it was only available when using the python_file key in your workspace). See the Workspace docs (https://docs.dagster.io/concepts/repositories-workspaces/workspaces#loading-relative-imports) for more information.

Bugfixes#

  • In Dagit, when viewing an in-progress run, the logic used to render the “Terminate” button was backward: it would appear for a completed run, but not for an in-progress run. This bug was introduced in 0.13.13, and is now fixed.
  • Previously, errors in the instance’s configured compute log manager would cause runs to fail. Now, these errors are logged but do not affect job execution.
  • The full set of DynamicOutputs returned by a op are no longer retained in memory if there is no hook to receive the values. This allows for DynamicOutput to be used for breaking up a large data set that can not fit in memory.

Breaking Changes#

  • When running your own gRPC server to serve Dagster code, jobs that launch in a container using code from that server will now default to using dagster as the entry point. Previously, the jobs would run using PYTHON_EXECUTABLE -m dagster, where PYTHON_EXECUTABLE was the value of sys.executable on the gRPC server. For the vast majority of Dagster jobs, these entry points will be equivalent. To keep the old behavior (for example, if you have multiple Python virtualenvs in your image and want to ensure that runs also launch in a certain virtualenv), you can launch the gRPC server using the new ----use-python-environment-entry-point command-line arg.

Community Contributions#

  • [bugfix] Fixed an issue where log levels on handlers defined in dagster.yaml would be ignored (thanks @lambdaTW!)

Documentation#

UI#

  • When re-launching a run, the log/step filters are now preserved in the new run’s page.
  • Step execution times/recent runs now appear in the job/graph sidebar.

0.13.13#

New#

  • [dagster-dbt] dbt rpc resources now surface dbt log messages in the Dagster event log.
  • [dagster-databricks] The databricks_pyspark_step_launcher now streams Dagster logs back from Databricks rather than waiting for the step to completely finish before exporting all events. Fixed an issue where all events from the external step would share the same timestamp. Immediately after execution, stdout and stderr logs captured from the Databricks worker will be automatically surfaced to the event log, removing the need to set the wait_for_logs option in most scenarios.
  • [dagster-databricks] The databricks_pyspark_step_launcher now supports dynamically mapped steps.
  • If the scheduler is unable to reach a code server when executing a schedule tick, it will now wait until the code server is reachable again before continuing, instead of marking the schedule tick as failed.
  • The scheduler will now check every 5 seconds for new schedules to run, instead of every 30 seconds.
  • The run viewer and workspace pages of Dagit are significantly more performant.
  • Dagit loads large (100+ node) asset graphs faster and retrieves information about the assets being rendered only.
  • When viewing an asset graph in Dagit, you can now rematerialize the entire graph by clicking a single “Refresh” button, or select assets to rematerialize them individually. You can also launch a job to rebuild an asset directly from the asset details page.
  • When viewing a software-defined asset, Dagit displays its upstream and downstream assets in two lists instead of a mini-graph for easier scrolling and navigation. The statuses of these assets are updated in real-time. This new UI also resolves a bug where only one downstream asset would appear.

Bugfixes#

  • Fixed bug where execute_in_process would not work for graphs with nothing inputs.
  • In the Launchpad in Dagit, the Ctrl+A command did not correctly allow select-all behavior in the editor for non-Mac users, this has now been fixed.
  • When viewing a DAG in Dagit and hovering on a specific input or output for an op, the connections between the highlighted inputs and outputs were too subtle to see. These are now a bright blue color.
  • In Dagit, when viewing an in-progress run, a caching bug prevented the page from updating in real time in some cases. For instance, runs might appear to be stuck in a queued state long after being dequeued. This has been fixed.
  • Fixed a bug in the k8s_job_executor where the same step could start twice in rare cases.
  • Enabled faster queries for the asset catalog by migrating asset database entries to store extra materialization data.
  • [dagster-aws] Viewing the compute logs for in-progress ops for instances configured with the S3ComputeLogManager would cause errors in Dagit. This is now fixed.
  • [dagster-pandas] Fixed bug where Pandas categorical dtype did not work by default with dagster-pandas categorical_column constraint.
  • Fixed an issue where schedules that yielded a SkipReason from the schedule function did not display the skip reason in the tick timeline in Dagit, or output the skip message in the dagster-daemon log output.
  • Fixed an issue where the snapshot link of a finished run in Dagit would sometimes fail to load with a GraphQL error.
  • Dagit now supports software-defined assets that are defined in multiple jobs within a repo, and displays a warning when assets in two repos share the same name.

Breaking Changes#

  • We previously allowed schedules to be defined with cron strings like @daily rather than 0 0 * * *. However, these schedules would fail to actually run successfully in the daemon and would also cause errors when viewing certain pages in Dagit. We now raise an DagsterInvalidDefinitionError for schedules that do not have a cron expression consisting of a 5 space-separated fields.

Community Contributions#

  • In dagster-dask, a schema can now be conditionally specified for ops materializing outputs to parquet files, thank you @kudryk!
  • Dagster-gcp change from @AndreaGiardini that replaces get_bucket() calls with bucket(), to avoid unnecessary bucket metadata fetches, thanks!
  • Typo fix from @sebastianbertoli, thank you!
  • [dagster-k8s] Kubernetes jobs and pods created by Dagster now have labels identifying the name of the Dagster job or op they are running. Thanks @skirino!

Experimental#

  • [dagit] Made performance improvements for loading the asset graph.
  • [dagit] The debug console logging output now tracks calls to fetch data from the database, to help track inefficient queries.

0.13.12#

New#

  • The dagit and dagster-daemon processes now use a structured Python logger for command-line output.
  • Dagster command-line logs now include the system timezone in the logging timestamp.
  • When running your own Dagster gRPC code server, the server process will now log a message to stdout when it starts up and when it shuts down.
  • [dagit] The sensor details page and sensor list page now display links to the assets tracked by @asset_sensors.
  • [dagit] Improved instance warning in Dagit. Previously, Dagit showed an instance warning for daemon not running when no repos have schedulers or sensors.
  • [dagster-celery-k8s] You can now specify volumes and volume mounts to runs using the CeleryK8sRunLauncher that will be included in all launched jobs.
  • [dagster-databricks] You are no longer required to specify storage configuration when using the databricks_pyspark_step_launcher.
  • [dagster-databricks] The databricks_pyspark_step_launcher can now be used with dynamic mapping and collect steps.
  • [dagster-mlflow] The end_mlflow_on_run_finished hook is now a top-level export of the dagster mlflow library. The API reference also now includes an entry for it.

Bugfixes#

  • Better backwards-compatibility for fetching asset keys materialized from older versions of dagster.
  • Fixed an issue where jobs running with op subsets required some resource configuration as part of the run config, even when they weren’t required by the selected ops.
  • RetryPolicy is now respected when execution is interrupted.
  • [dagit] Fixed "Open in Playground" link on the scheduled ticks.
  • [dagit] Fixed the run ID links on the Asset list view.
  • [dagit] When viewing an in-progress run, the run status sometimes failed to update as new logs arrived, resulting in a Gantt chart that either never updated from a “queued” state or did so only after a long delay. The run status and Gantt chart now accurately match incoming logs.

Community Contributions#

  • [dagster-k8s] Fixed an issue where specifying job_metadata in tags did not correctly propagate to Kubernetes jobs created by Dagster. Thanks @ibelikov!

Experimental#

  • [dagit] Made performance improvements for loading the asset graph.

Documentation#

  • The Versioning and Memoization guide has been updated to reflect a new set of core memoization APIs.
  • [dagster-dbt] Updated the dagster-dbt integration guide to mention the new dbt Cloud integration.
  • [dagster-dbt] Added documentation for the default_flags property of DbtCliResource.

0.13.11#

New#

  • [dagit] Made performance improvements to the Run page.
  • [dagit] Highlighting a specific sensor / schedule ticks is now reflected in a shareable URL.

Bugfixes#

  • [dagit] On the Runs page, when filtering runs with a tag containing a comma, the filter input would incorrectly break the tag apart. This has been fixed.
  • [dagit] For sensors that do not target a specific job (e.g. un_status_sensor, we are now hiding potentially confusing Job details
  • [dagit] Fixed an issue where some graph explorer views generated multiple scrollbars.
  • [dagit] Fixed an issue with the Run view where the Gantt view incorrectly showed in-progress steps when the run had exited.
  • [dagster-celery-k8s] Fixed an issue where setting a custom Celery broker URL but not a custom Celery backend URL in the helm chart would produce an incorrect Celery configuration.
  • [dagster-k8s] Fixed an issue where Kubernetes volumes using list or dict types could not be set in the Helm chart.

Community Contributions#

  • [dagster-k8s] Added the ability to set a custom location name when configuring a workspace in the Helm chart. Thanks @pcherednichenko!

Experimental#

  • [dagit] Asset jobs now display with spinners on assets that are currently in progress.
  • [dagit] Assets jobs that are in progress will now display a dot icon on all assets that are not yet running but will be re-materialized in the run.
  • [dagit] Fixed broken links to the asset catalog entries from the explorer view of asset jobs.
  • The AssetIn input object now accepts an asset key so upstream assets can be explicitly specified (e.g. AssetIn(asset_key=AssetKey("asset1")))
  • The @asset decorator now has an optional non_argument_deps parameter that accepts AssetKeys of assets that do not pass data but are upstream dependencies.
  • ForeignAsset objects now have an optional description attribute.

Documentation#

  • “Validating Data with Dagster Type Factories” guide added.

0.13.10#

New#

  • run_id, job_name, and op_exception have been added as parameters to build_hook_context.
  • You can now define inputs on the top-level job / graph. Those inputs can be can configured as an inputs key on the top level of your run config. For example, consider the following job:
from dagster import job, op

@op
def add_one(x):
    return x + 1

@job
def my_job(x):
    add_one(x)

You can now add config for x at the top level of my run_config like so:

run_config = {
  "inputs": {
    "x": {
      "value": 2
    }
  }
}
  • You can now create partitioned jobs and reference a run’s partition from inside an op body or IOManager load_input or handle_output method, without threading partition values through config. For example, where previously you might have written:
@op(config_schema={"partition_key": str})
def my_op(context):
    print("partition_key: " + context.op_config["partition_key"])

@static_partitioned_config(partition_keys=["a", "b"])
def my_static_partitioned_config(partition_key: str):
    return {"ops": {"my_op": {"config": {"partition_key": partition_key}}}}

@job(config=my_static_partitioned_config)
def my_partitioned_job():
    my_op()

You can now write:

@op
def my_op(context):
    print("partition_key: " + context.partition_key)

@job(partitions_def=StaticPartitionsDefinition(["a", "b"]))
def my_partitioned_job():
    my_op()
  • Added op_retry_policy to @job. You can also specify op_retry_policy when invoking to_job on graphs.
  • [dagster-fivetran] The fivetran_sync_op will now be rendered with a fivetran tag in Dagit.
  • [dagster-fivetran] The fivetran_sync_op now supports producing AssetMaterializations for each table updated during the sync. To this end, it now outputs a structured FivetranOutput containing this schema information, instead of an unstructured dictionary.
  • [dagster-dbt] AssetMaterializations produced from the dbt_cloud_run_op now include a link to the dbt Cloud docs for each asset (if docs were generated for that run).
  • You can now use the @schedule decorator with RunRequest - based evaluation functions. For example, you can now write:
@schedule(cron_schedule="* * * * *", job=my_job)
def my_schedule(context):
    yield RunRequest(run_key="a", ...)
    yield RunRequest(run_key="b", ...)
  • [dagster-k8s] You may now configure instance-level python_logs settings using the Dagster Helm chart.
  • [dagster-k8s] You can now manage a secret that contains the Celery broker and backend URLs, rather than the Helm chart
  • [Dagster-slack] Improved the default messages in make_slack_on_run_failure_sensor to use Slack layout blocks and include clickable link to Dagit. Previously, it sent a plain text message.

Dagit#

  • Made performance improvements to the Run page.
  • The Run page now has a pane control that splits the Gantt view and log table evenly on the screen.
  • The Run page now includes a list of succeeded steps in the status panel next to the Gantt chart.
  • In the Schedules list, execution timezone is now shown alongside tick timestamps.
  • If no repositories are successfully loaded when viewing Dagit, we now redirect to /workspace to quickly surface errors to the user.
  • Increased the size of the reload repository button
  • Repositories that had been hidden from the left nav became inaccessible when loaded in a workspace containing only that repository. Now, when loading a workspace containing a single repository, jobs for that repository will always appear in the left nav.
  • In the Launchpad, selected ops were incorrectly hidden in the lower right panel.
  • Repaired asset search input keyboard interaction.
  • In the Run page, the list of previous runs was incorrectly ordered based on run ID, and is now ordered by start time.
  • Using keyboard commands with the / key (e.g. toggling commented code) in the config editor

Bugfixes#

  • Previously, if an asset in software-defined assets job depended on a ForeignAsset, the repository containing that job would fail to load.
  • Incorrectly triggered global search. This has been fixed.
  • Fix type on tags of EMR cluster config (thanks Chris)!
  • Fixes to the tests in dagster new-project , which were previously using an outdated result API (thanks Vašek)!

Experimental#

  • You can now mount AWS Secrets Manager secrets as environment variables in runs launched by the EcsRunLauncher.
  • You can now specify the CPU and Memory for runs launched by the EcsRunLauncher.
  • The EcsRunLauncher now dynamically chooses between assigning a public IP address or not based on whether it’s running in a public or private subnet.
  • The @asset and @multi_asset decorator now return AssetsDefinition objects instead of OpDefinitions

Documentation#

  • The tutorial now uses get_dagster_logger instead of context.log.
  • In the API docs, most configurable objects (such as ops and resources) now have their configuration schema documented in-line.
  • Removed typo from CLI readme (thanks Kan (https://github.com/zkan))!

0.13.9#

New#

  • Memoization can now be used with the multiprocess, k8s, celery-k8s, and dask executors.

0.13.8#

New#

  • Improved the error message for situations where you try a, b = my_op(), inside @graph or @job, but my_op only has a single Out.
  • [dagster-dbt] A new integration with dbt Cloud allows you to launch dbt Cloud jobs as part of your Dagster jobs. This comes complete with rich error messages, links back to the dbt Cloud UI, and automatically generated Asset Materializations to help keep track of your dbt models in Dagit. It provides a pre-built dbt_cloud_run_op, as well as a more flexible dbt_cloud_resource for more customized use cases. Check out the api docs to learn more!
  • [dagster-gcp] Pinned the google-cloud-bigquery dependency to <3, because the new 3.0.0b1 version was causing some problems in tests.
  • [dagit] Verbiage update to make it clear that wiping an asset means deleting the materialization events for that asset.

Bugfixes#

  • Fixed a bug with the pipeline launch / job launch CLIs that would spin up an ephemeral dagster instance for the launch, then tear it down before the run actually executed. Now, the CLI will enforce that your instance is non-ephemeral.
  • Fixed a bug with re-execution when upstream step skips some outputs. Previously, it mistakenly tried to load inputs from parent runs. Now, if an upstream step doesn’t yield outputs, the downstream step would skip.
  • [dagit] Fixed a bug where configs for unsatisfied input wasn’t properly resolved when op selection is specified in Launchpad.
  • [dagit] Restored local font files for Inter and Inconsolata instead of using the Google Fonts API. This allows correct font rendering for offline use.
  • [dagit] Improved initial workspace loading screen to indicate loading state instead of showing an empty repository message.

Breaking Changes#

  • The pipeline argument of the InitExecutorContext constructor has been changed to job.

Experimental#

  • The @asset decorator now accepts a dagster_type argument, which determines the DagsterType for the output of the asset op.
  • build_assets_job accepts an executor_def argument, which determines the executor for the job.

Documentation#

  • A docs section on context manager resources has been added. Check it out here.
  • Removed the versions of the Hacker News example jobs that used the legacy solid & pipeline APIs.

0.13.7#

New#

  • The Runs page in Dagit now loads much more quickly.

Bugfixes#

  • Fixed an issue where Dagit would sometimes display a red "Invalid JSON" error message.

Dependencies#

  • google-cloud-bigquery is temporarily pinned to be prior to version 3 due to a breaking change in that version.

0.13.6#

Bugfixes#

  • Previously, the EcsRunLauncher tagged each ECS task with its corresponding Dagster Run ID. ECS tagging isn't supported for AWS accounts that have not yet migrated to using the long ARN format. Now, the EcsRunLauncher only adds this tag if your AWS account has the long ARN format enabled.
  • Fixed a bug in the k8s_job_executor and docker_executor that could result in jobs exiting as SUCCESS before all ops have run.
  • Fixed a bug in the k8s_job_executor and docker_executor that could result in jobs failing when an op is skipped.

Dependencies#

  • graphene is temporarily pinned to be prior to version 3 to unbreak Dagit dependencies.

0.13.5#

New#

  • [dagster-fivetran] A new dagster-fivetran integration allows you to launch Fivetran syncs and monitor their progress from within Dagster. It provides a pre-built fivetran_sync_op, as well as a more flexible fivetran_resource for more customized use cases. Check out the api docs to learn more!
  • When inferring a graph/job/op/solid/pipeline description from the docstring of the decorated function, we now dedent the docstring even if the first line isn’t indented. This allows descriptions to be formatted nicely even when the first line is on the same line as the triple-quotes.
  • The SourceHashVersionStrategy class has been added, which versions op and resource code. It can be provided to a job like so:
from dagster import job, SourceHashVersionStrategy

@job(version_strategy=SourceHashVersionStrategy())
def my_job():
     ...
  • [dagit] Improved performance on the initial page load of the Run page, as well as the partitions UI / launch backfill modal
  • [dagit] Fixed a bug where top-level graphs in the repo could not be viewed in the Workspace > Graph view.

Bugfixes#

  • Fixed an issue where turning a partitioned schedule off and on again would sometimes result in unexpected past runs being created. (#5604)
  • Fixed an issue where partition sets that didn’t return a new copy of run configuration on each function call would sometimes apply the wrong config to partitions during backfills.
  • Fixed rare issue where using dynamic outputs in combination with optional outputs would cause errors when using certain executors.
  • [dagster-celery-k8s] Fixed bug where CeleryK8s executor would not respect job run config
  • [dagit] Fixed bug where graphs would sometimes appear off-center.

Breaking Changes#

  • In 0.13.0, job CLI commands executed via dagster job selected both pipelines and jobs. This release changes the dagster job command to select only jobs and not pipelines.

Community Contributions#

  • [dagster-dask] Updated DaskClusterTypes to have the correct import paths for certain cluster managers (thanks @kudryk!)
  • [dagster-azure] Updated version requirements for Azure to be more recent and more permissive (thanks @roeap !)
  • [dagster-shell] Ops will now copy the host environment variables at runtime, rather than copying them from the environment that their job is launched from (thanks @alexismanuel !)

Documentation#

  • The job, op, graph migration guide was erroneously marked experimental. This has been fixed.

0.13.4#

New#

  • [dagster-k8s] The k8s_job_executor is no longer experimental, and is recommended for production workloads. This executor runs each op in a separate Kubernetes job. We recommend this executor for Dagster jobs that require greater isolation than the multiprocess executor can provide within a single Kubernetes pod. The celery_k8s_job_executor will still be supported, but is recommended only for use cases where Celery is required (The most common example is to offer step concurrency limits using multiple Celery queues). Otherwise, the k8s_job_executor is the best way to get Kubernetes job isolation.
  • [dagster-airflow] Updated dagster-airflow to better support job/op/graph changes by adding a make_dagster_job_from_airflow_dag factory function. Deprecated pipeline_name argument in favor of job_name in all the APIs.
  • Removed a version pin of the chardet library that was required due to an incompatibility with an old version of the aiohttp library, which has since been fixed.
  • We now raise a more informative error if the wrong type is passed to the ins argument of the op decorator.
  • In the Dagit Launchpad, the button for launching a run now says “Launch Run” instead of “Launch Execution”

Bugfixes#

  • Fixed an issue where job entries from Dagit search navigation were not linking to the correct job pages.
  • Fixed an issue where jobs / pipelines were showing up instead of the underlying graph in the list of repository graph definitions.
  • Fixed a bug with using custom loggers with default config on a job.
  • [dagster-slack] The slack_on_run_failure_sensor now says “Job” instead of “Pipeline” in its default message.

Community Contributions#

  • Fixed a bug that was incorrectly causing a DagsterTypeCheckDidNotPass error when a Dagster Type contained a List inside a Tuple (thanks @jan-eat!)
  • Added information for setting DAGSTER_HOME in Powershell and batch for windows users. (thanks @slamer59!)

Experimental#

  • Changed the job explorer view in Dagit to show asset-based graphs when the experimental Asset API flag is turned on for any job that has at least one software-defined asset.

Documentation#

  • Updated API docs and integration guides to reference job/op/graph for various libraries (dagstermill, dagster-pandas, dagster-airflow, etc)
  • Improved documentation when attempting to retrieve output value from execute_in_process, when job does not have a top-level output.

0.13.3#

Bugfixes#

  • [dagster-k8s] Fixed a bug that caused retries to occur twice with the k8s_job_executor

0.13.2#

New#

  • Updated dagstermill to better support job/op/graph changes by adding a define_dagstermill_op factory function. Also updated documentation and examples to reflect these changes.
  • Changed run history for jobs in Dagit to include legacy mode tags for runs that were created from pipelines that have since been converted to use jobs.
  • The new get_dagster_logger() method is now importable from the top level dagster module (from dagster import get_dagster_logger)
  • [dagster-dbt] All dagster-dbt resources (dbt_cli_resource, dbt_rpc_resource, and dbt_rpc_sync_resource) now support the dbt ls command: context.resources.dbt.ls().
  • Added ins and outs properties to OpDefinition.
  • Updated the run status favicon of the Run page in Dagit.
  • There is now a resources_config argument on build_solid_context. The config argument has been renamed to solid_config.
  • [helm] When deploying Redis using the Dagster helm chart, by default the new cluster will not require authentication to start a connection to it.
  • [dagster-k8s] The component name on Kubernetes jobs for run and step workers is now run_worker and step_worker, respectively.
  • Improved performance for rendering the Gantt chart on the Run page for runs with very long event logs.

Bugfixes#

  • Fixed a bug where decorating a job with a hook would create a pipeline.
  • Fixed a bug where providing default logger config to a job would break with a confusing error.
  • Fixed a bug with retrieving output results from a mapped input on execute_in_process
  • Fixed a bug where schedules referencing a job were not creating runs using that job’s default run config.
  • [dagster-k8s] Fixed a bug where the retry mode was not being passed along through the k8s executor.

Breaking Changes#

  • The first argument on Executor.execute(...) has changed from pipeline_context to plan_context

Community Contributions#

  • When using multiple Celery workers in the Dagster helm chart, each worker can now be individually configured. See the helm chart for more information. Thanks @acrulopez!
  • [dagster-k8s] Changed Kubernetes job containers to use the fixed name dagster, rather than repeating the job name. Thanks @skirino!

Experimental#

  • [dagster-docker] Added a new docker_executor which executes steps in separate Docker containers.

  • The dagster-daemon process can now detect hanging runs and restart crashed run workers. Currently only supported for jobs using the docker_executor and k8s_job_executor. Enable this feature in your dagster.yaml with:

    run_monitoring:
      enabled: true
    

    Documentation coming soon. Reach out in the #dagster-support Slack channel if you are interested in using this feature.

Documentation#

  • Adding “Python Logging” back to the navigation pane.
  • Updated documentation for dagster-aws, dagster-github, and dagster-slack to reference job/op/graph APIs.

0.13.1#

New#

Docs#

  • Various fixes to broken links on pages in 0.13.0 docs release

Bug fixes#

  • Previously, the Dagster CLI would use a completely ephemeral dagster instance if $DAGSTER_HOME was not set. Since the new job abstraction by default requires a non-ephemeral dagster instance, this has been changed to instead create a persistent instance that is cleaned up at the end of an execution.

Dagit#

  • Run-status-colorized dagster logo is back on job execution page
  • Improvements to Gantt chart color scheme

0.13.0 "Get the Party Started"#

Major Changes#

  • The job, op, and graph APIs now represent the stable core of the system, and replace pipelines, solids, composite solids, modes, and presets as Dagster’s core abstractions. All of Dagster’s documentation - tutorials, examples, table of contents - is in terms of these new core APIs. Pipelines, modes, presets, solids, and composite solids are still supported, but are now considered “Legacy APIs”. We will maintain backcompatibility with the legacy APIs for some time, however, we believe the new APIs represent an elegant foundation for Dagster going forward. As time goes on, we will be adding new features that only apply to the new core. All in all, the new APIs provide increased clarity - they unify related concepts, make testing more lightweight, and simplify operational workflows in Dagit. For comprehensive instructions on how to transition to the new APIs, refer to the migration guide.
  • Dagit has received a complete makeover. This includes a refresh to the color palette and general design patterns, as well as functional changes that make common Dagit workflows more elegant. These changes are designed to go hand in hand with the new set of core APIs to represent a stable core for the system going forward.
  • You no longer have to pass a context object around to do basic logging. Many updates have been made to our logging system to make it more compatible with the python logging module. You can now capture logs produced by standard python loggers, set a global python log level, and set python log handlers that will be applied to every log message emitted from the Dagster framework. Check out the docs here!
  • The Dagit “playground” has been re-named into the Dagit “launchpad”. This reflects a vision of the tool closer to how our users actually interact with it - not just a testing/development tool, but also as a first-class starting point for many one-off workflows.
  • Introduced a new integration with Microsoft Teams, which includes a connection resource and support for sending messages to Microsoft Teams. See details in the API Docs (thanks @iswariyam!).
  • Intermediate storages, which were deprecated in 0.10.0, have now been removed. Refer to the “Deprecation: Intermediate Storage” section of the 0.10.0 release notes for how to use IOManagers instead.
  • The pipeline-level event types in the run log have been renamed so that the PIPELINE prefix has been replaced with RUN. For example, the PIPELINE_START event is now the RUN_START event.

New since 0.12.15#

  • Addition of get_dagster_logger function, which creates a python loggers whose output messages will be captured and converted into Dagster log messages.

Community Contributions#

  • The run_config attribute is now available on ops/solids built using the build_op_context or build_solid_context functions. Thanks @jiafi!
  • Limit configuration of applyLimitPerUniqueValue in k8s environments. Thanks @cvb!
  • Fix for a solid’s return statement in the intro tutorial. Thanks @dbready!
  • Fix for a bug with output keys in the s3_pickle_io_manager. Thanks @jiafi!

Breaking Changes#

  • We have renamed a lot of our GraphQL Types to reflect our emphasis on the new job/op/graph APIs. We have made the existing types backwards compatible so that GraphQL fragments should still work. However, if you are making custom GraphQL requests to your Dagit webserver, you may need to change your code to handle the new types.
  • We have paired our GraphQL changes with changes to our Python GraphQL client. If you have upgraded the version of your Dagit instance, you will most likely also want to upgrade the version of your Python GraphQL client.

Improvements#

  • Solid, op, pipeline, job, and graph descriptions that are inferred from docstrings now have leading whitespaces stripped out.
  • Improvements to how we cache and store step keys should speed up dynamic workflows with many dynamic outputs significantly.

Bugfixes#

  • Fixed a bug where kwargs could not be used to set the context when directly invoking a solid. IE my_solid(context=context_obj).
  • Fixed a bug where celery-k8s config did not work in the None case:
execution:
  celery-k8s:

Experimental#

  • Removed the lakehouse library, whose functionality is subsumed by @asset and build_assets_job in Dagster core.

Documentation#

  • Removed the trigger_pipeline example, which was not referenced in docs.
  • dagster-mlflow APIs have been added to API docs.

0.12.15#

Community Contributions#

  • You can now configure credentials for the GCSComputeLogManager using a string or environment variable instead of passing a path to a credentials file. Thanks @silentsokolov!
  • Fixed a bug in the dagster-dbt integration that caused the DBT RPC solids not to retry when they received errors from the server. Thanks @cdchan!
  • Improved helm schema for the QueuedRunCoordinator config. Thanks @cvb!

Bugfixes#

  • Fixed a bug where dagster instance migrate would run out of memory when migrating over long run histories.

Experimental#

  • Fixed broken links in the Dagit workspace table view for the experimental software-defined assets feature.

0.12.14#

Community Contributions#

  • Updated click version, thanks @ashwin153!
  • Typo fix, thanks @geoHeil!

Bugfixes#

  • Fixed a bug in dagster_aws.s3.sensor.get_s3_keys that would return no keys if an invalid s3 key was provided
  • Fixed a bug with capturing python logs where statements of the form my_log.info("foo %s", "bar") would cause errors in some scenarios.
  • Fixed a bug where the scheduler would sometimes hang during fall Daylight Savings Time transitions when Pendulum 2 was installed.

Experimental#

  • Dagit now uses an asset graph to represent jobs built using build_assets_job. The asset graph shows each node in the job’s graph with metadata about the asset it corresponds to - including asset materializations. It also contains links to upstream jobs that produce assets consumed by the job, as well as downstream jobs that consume assets produced by the job.
  • Fixed a bug in load_assets_from_dbt_project and load_assets_from_dbt_project that would cause runs to fail if no runtime_metadata_fn argument were supplied.
  • Fixed a bug that caused @asset not to infer the type of inputs and outputs from type annotations of the decorated function.
  • @asset now accepts a compute_kind argument. You can supply values like “spark”, “pandas”, or “dbt”, and see them represented as a badge on the asset in the Dagit asset graph.

0.12.13#

Community Contributions#

  • Changed VersionStrategy.get_solid_version and VersionStrategy.get_resource_version to take in a SolidVersionContext and ResourceVersionContext, respectively. This gives VersionStrategy access to the config (in addition to the definition object) when determining the code version for memoization. (Thanks @RBrossard!).

    Note: This is a breaking change for anyone using the experimental VersionStrategy API. Instead of directly being passed solid_def and resource_def, you should access them off of the context object using context.solid_def and context.resource_def respectively.

New#

  • [dagster-k8s] When launching a pipeline using the K8sRunLauncher or k8s_job_executor, you can know specify a list of volumes to be mounted in the created pod. See the API docs for for information.
  • [dagster-k8s] When specifying a list of environment variables to be included in a pod using custom configuration, you can now specify the full set of parameters allowed by a V1EnvVar in Kubernetes.

Bugfixes#

  • Fixed a bug where mapping inputs through nested composite solids incorrectly caused validation errors.
  • Fixed a bug in Dagit, where WebSocket reconnections sometimes led to logs being duplicated on the Run page.
  • Fixed a bug In Dagit, where log views that were scrolled all the way down would not auto-scroll as new logs came in.

Documentation#

0.12.12#

Community Contributions#

  • [dagster-msteams] Introduced a new integration with Microsoft Teams, which includes a connection resource and support for sending messages to Microsoft Teams. See details in the API Docs (thanks @iswariyam!).
  • Fixed a mistake in the sensors docs (thanks @vitorbaptista)!

Bugfixes#

  • Fixed a bug that caused run status sensors to sometimes repeatedly fire alerts.
  • Fixed a bug that caused the emr_pyspark_step_launcher to fail when stderr included non-Log4J-formatted lines.
  • Fixed a bug that caused applyPerUniqueValue config on the QueuedRunCoordinator to fail Helm schema validation.
  • [dagster-shell] Fixed an issue where a failure while executing a shell command sometimes didn’t raise a clear explanation for the failure.

Experimental#

  • Added experimental @asset decorator and build_assets_job APIs to construct asset-based jobs, along with Dagit support.
  • Added load_assets_from_dbt_project and load_assets_from_dbt_manifest, which enable constructing asset-based jobs from DBT models.

0.12.11#

Community Contributions#

  • [helm] The ingress now supports TLS (thanks @cpmoser!)
  • [helm] Fixed an issue where dagit could not be configured with an empty workspace (thanks @yamrzou!)

New#

  • [dagstermill] You can now have more precise IO control over the output notebooks by specifying output_notebook_name in define_dagstermill_solid and providing your own IO manager via "output_notebook_io_manager" resource key.

  • We've deprecated output_notebook argument in define_dagstermill_solid in favor of output_notebook_name.

  • Previously, the output notebook functionality requires “file_manager“ resource and result in a FileHandle output. Now, when specifying output_notebook_name, it requires "output_notebook_io_manager" resource and results in a bytes output.

  • You can now customize your own "output_notebook_io_manager" by extending OutputNotebookIOManager. A built-in local_output_notebook_io_manager is provided for handling local output notebook materialization.

  • See detailed migration guide in https://github.com/dagster-io/dagster/pull/4490.

  • Dagit fonts have been updated.

Bugfixes#

  • Fixed a bug where log messages of the form context.log.info("foo %s", "bar") would not get formatted as expected.
  • Fixed a bug that caused the QueuedRunCoordinator’s tag_concurrency_limits to not be respected in some cases
  • When loading a Run with a large volume of logs in Dagit, a loading state is shown while logs are retrieved, clarifying the loading experience and improving render performance of the Gantt chart.
  • Using solid selection with pipelines containing dynamic outputs no longer causes unexpected errors.

Experimental#

  • You can now set tags on a graph by passing in a dictionary to the tags argument of the @graph decorator or GraphDefinition constructor. These tags will be set on any runs of jobs are built from invoking to_job on the graph.
  • You can now set separate images per solid when using the k8s_job_executor or celery_k8s_job_executor. Use the key image inside the container_config block of the k8s solid tag.
  • You can now target multiple jobs with a single sensor, by using the jobs argument. Each RunRequest emitted from a multi-job sensor’s evaluation function must specify a job_name.

0.12.10#

Community Contributions#

  • [helm] The KubernetesRunLauncher image pull policy is now configurable in a separate field (thanks @yamrzou!).
  • The dagster-github package is now usable for GitHub Enterprise users (thanks @metinsenturk!) A hostname can now be provided via config to the dagster-github resource with the key github_hostname:
execute_pipeline(
      github_pipeline, {'resources': {'github': {'config': {
           "github_app_id": os.getenv('GITHUB_APP_ID'),
           "github_app_private_rsa_key": os.getenv('GITHUB_PRIVATE_KEY'),
           "github_installation_id": os.getenv('GITHUB_INSTALLATION_ID'),
           "github_hostname": os.getenv('GITHUB_HOSTNAME'),
      }}}}
)

New#

  • Added a database index over the event log to improve the performance of pipeline_failure_sensor and run_status_sensor queries. To take advantage of these performance gains, run a schema migration with the CLI command: dagster instance migrate.

Bugfixes#

  • Performance improvements have been made to allow dagit to more gracefully load a run that has a large number of events.
  • Fixed an issue where DockerRunLauncher would raise an exception when no networks were specified in its configuration.

Breaking Changes#

  • dagster-slack has migrated off of deprecated slackclient (deprecated) and now uses [slack_sdk](https://slack.dev/python-slack-sdk/v3-migration/).

Experimental#

  • OpDefinition, the replacement for SolidDefinition which is the type produced by the @op decorator, is now part of the public API.
  • The daily_partitioned_config, hourly_partitioned_config, weekly_partitioned_config, and monthly_partitioned_config now accept an end_offset parameter, which allows extending the set of partitions so that the last partition ends after the current time.

0.12.9#

Community Contributions#

  • A service account can now be specified via Kubernetes tag configuration (thanks @skirino) !

New#

  • Previously in Dagit, when a repository location had an error when reloaded, the user could end up on an empty page with no context about the error. Now, we immediately show a dialog with the error and stack trace, with a button to try reloading the location again when the error is fixed.

  • Dagster is now compatible with Python’s logging module. In your config YAML file, you can configure log handlers and formatters that apply to the entire Dagster instance. Configuration instructions and examples detailed in the docs: https://docs.dagster.io/concepts/logging/python-logging

  • [helm] The timeout of database statements sent to the Dagster instance can now be configured using .dagit.dbStatementTimeout.

  • The QueuedRunCoordinator now supports setting separate limits for each unique value with a certain key. In the below example, 5 runs with the tag (backfill: first) could run concurrently with 5 other runs with the tag (backfill: second).

run_coordinator:
  module: dagster.core.run_coordinator
  class: QueuedRunCoordinator
  config:
    tag_concurrency_limits:
      - key: backfill
        value:
          applyLimitPerUniqueValue: True
        limit: 5

Bugfixes#

  • Previously, when specifying hooks on a pipeline, resource-to-resource dependencies on those hooks would not be resolved. This is now fixed, so resources with dependencies on other resources can be used with hooks.
  • When viewing a run in Dagit, the run status panel to the right of the Gantt chart did not always allow scrolling behavior. The entire panel is now scrollable, and sections of the panel are collapsible.
  • Previously, attempting to directly invoke a solid with Nothing inputs would fail. Now, the defined behavior is that Nothing inputs should not be provided to an invocation, and the invocation will not error.
  • Skip and fan-in behavior during execution now works correctly when solids with dynamic outputs are skipped. Previously solids downstream of a dynamic output would never execute.
  • [helm] Fixed an issue where the image tag wasn’t set when running an instance migration job via .migrate.enabled=True.

0.12.8#

New#

  • Added instance on RunStatusSensorContext for accessing the Dagster Instance from within the run status sensors.

  • The inputs of a Dagstermill solid now are loaded the same way all other inputs are loaded in the framework. This allows rerunning output notebooks with properly loaded inputs outside Dagster context. Previously, the IO handling depended on temporary marshal directory.

  • Previously, the Dagit CLI could not target a bare graph in a file, like so:

    from dagster import op, graph
    
    @op
    def my_op():
        pass
    
    @graph
    def my_graph():
        my_op()
    

    This has been remedied. Now, a file foo.py containing just a graph can be targeted by the dagit CLI: dagit -f foo.py.

  • When a solid, pipeline, schedule, etc. description or event metadata entry contains a markdown-formatted table, that table is now rendered in Dagit with better spacing between elements.

  • The hacker-news example now includes instructions on how to deploy the repository in a Kubernetes cluster using the Dagster Helm chart.

  • [dagster-dbt] The dbt_cli_resource now supports the dbt source snapshot-freshness command (thanks @emilyhawkins-drizly!)

  • [helm] Labels are now configurable on user code deployments.

Bugfixes

  • Dagit’s dependency on graphql-ws is now pinned to < 0.4.0 to avoid a breaking change in its latest release. We expect to remove this dependency entirely in a future Dagster release.
  • Execution steps downstream of a solid that emits multiple dynamic outputs now correctly resolve without error.
  • In Dagit, when repositories are loaded asynchronously, pipelines/jobs now appear immediately in the left navigation.
  • Pipeline/job descriptions with markdown are now rendered correctly in Dagit, and styling is improved for markdown-based tables.
  • The Dagit favicon now updates correctly during navigation to and from Run pages.
  • In Dagit, navigating to assets with keys that contain slashes would sometimes fail due to a lack of URL encoding. This has been fixed.
  • When viewing the Runs list on a smaller viewport, tooltips on run tags no longer flash.
  • Dragging the split panel view in the Solid/Op explorer in Dagit would sometimes leave a broken rendered state. This has been fixed.
  • Dagstermill notebook previews now works with remote user code deployment.
  • [dagster-shell] When a pipeline run fails, subprocesses spawned from dagster-shell utilities will now be properly terminated.
  • Fixed an issue associated with using EventMetadata.asset and EventMetadata.pipeline_run in AssetMaterialization metadata. (Thanks @ymrzkrrs and @drewsonne!)

Breaking Changes

  • Dagstermill solids now require a shared-memory io manager, e.g. fs_io_manager, which allows data to be passed out of the Jupyter process boundary.

Community Contributions

  • [helm] Added missing documentation to fields in the Dagster User Deployments subchart (thanks @jrouly!)

Documentation

0.12.7#

New#

  • In Dagit, the repository locations list has been moved from the Instance Status page to the Workspace page. When repository location errors are present, a warning icon will appear next to “Workspace” in the left navigation.
  • Calls to context.log.info() and other similar functions now fully respect the python logging API. Concretely, log statements of the form context.log.error(“something %s happened!”, “bad”) will now work as expected, and you are allowed to add things to the “extra” field to be consumed by downstream loggers: context.log.info("foo", extra={"some":"metadata"}).
  • Utility functions config_from_files, config_from_pkg_resources, and config_from_yaml_strings have been added for constructing run config from yaml files and strings.
  • DockerRunLauncher can now be configured to launch runs that are connected to more than one network, by configuring the networks key.

Bugfixes#

  • Fixed an issue with the pipeline and solid Kubernetes configuration tags. env_from and volume_mounts are now properly applied to the corresponding Kubernetes run worker and job pods.
  • Fixed an issue where Dagit sometimes couldn’t start up when using MySQL storage.
  • [dagster-mlflow] The end_mlflow_run_on_pipeline_finished hook now no longer errors whenever invoked.

Breaking Changes#

  • Non-standard keyword arguments to context.log calls are now not allowed. context.log.info("msg", foo="hi") should be rewritten as context.log.info("msg", extra={"foo":"hi"}).
  • [dagstermill] When writing output notebook fails, e.g. no file manager provided, it won't yield AssetMaterialization. Previously, it would still yield an AssetMaterialization where the path is a temp file path that won't exist after the notebook execution.

Experimental#

  • Previously, in order to use memoization, it was necessary to provide a resource version for every resource used in a pipeline. Now, resource versions are optional, and memoization can be used without providing them.
  • InputContext and OutputContext now each has an asset_key that returns the asset key that was provided to the corresponding InputDefinition or OutputDefinition.

Documentation#

  • The Spark documentation now discusses all the ways of using Dagster with Spark, not just using PySpark

0.12.6#

New#

  • [dagster-dbt] Added a new synchronous RPC dbt resource (dbt_rpc_sync_resource), which allows you to programmatically send dbt commands to an RPC server, returning only when the command completes (as opposed to returning as soon as the command has been sent).
  • Specifying secrets in the k8s_job_executor now adds to the secrets specified in K8sRunLauncher instead of overwriting them.
  • The local_file_manager no longer uses the current directory as the default base_dir instead defaulting to LOCAL_ARTIFACT_STORAGE/storage/file_manager. If you wish, you can configure LOCAL_ARTIFACT_STORAGE in your dagster.yaml file.

Bugfixes#

  • Following the recent change to add strict Content-Security-Policy directives to Dagit, the CSP began to block the iframe used to render ipynb notebook files. This has been fixed and these iframes should now render correctly.
  • Fixed an error where large files would fail to upload when using the s3_pickle_io_manager for intermediate storage.
  • Fixed an issue where Kubernetes environment variables defined in pipeline tags were not being applied properly to Kubernetes jobs.
  • Fixed tick preview in the Recent live tick timeline view for Sensors.
  • Added more descriptive error messages for invalid sensor evaluation functions.
  • dagit will now write to a temp directory in the current working directory when launched with the env var DAGSTER_HOME not set. This should resolve issues where the event log was not keeping up to date when observing runs progress live in dagit with no DAGSTER_HOME
  • Fixed an issue where retrying from a failed run sometimes failed if the pipeline was changed after the failure.
  • Fixed an issue with default config on to_job that would result in an error when using an enum config schema within a job.

Community Contributions#

  • Documentation typo fix for pipeline example, thanks @clippered!

Experimental#

  • Solid and resource versions will now be validated for consistency. Valid characters are A-Za-z0-9_.

Documentation#

  • The “Testing Solids and Pipelines” section of the tutorial now uses the new direct invocation functionality and tests a solid and pipeline from an earlier section of the tutorial.
  • Fixed the example in the API docs for EventMetadata.python_artifact.

0.12.5#

Bugfixes#

  • Fixed tick display in the sensor/schedule timeline view in Dagit.
  • Changed the dagster sensor list and dagster schedule list CLI commands to include schedules and sensors that have never been turned on.
  • Fixed the backfill progress stats in Dagit which incorrectly capped the number of successful/failed runs.
  • Improved query performance in Dagit on pipeline (or job) views, schedule views, and schedules list view by loading partition set data on demand instead of by default.
  • Fixed an issue in Dagit where re-executing a pipeline that shares an identical name and graph to a pipeline in another repository could lead to the wrong pipeline being executed.
  • Fixed an issue in Dagit where loading a very large DAG in the pipeline overview could sometimes lead to a render loop that repeated the same GraphQL query every few seconds, causing an endless loading state and never rendering the DAG.
  • Fixed an issue with execute_in_process where providing default executor config to a job would cause config errors.
  • Fixed an issue with default config for jobs where using an ops config entry in place of solids would cause a config error.
  • Dynamic outputs are now properly supported while using adls2_io_manager
  • ModeDefinition now validates the keys of resource_defs at definition time.
  • Failure exceptions no longer bypass the RetryPolicy if one is set.

Community Contributions#

  • Added serviceAccount.name to the user deployment Helm subchart and schema, thanks @jrouly!

Experimental#

  • To account for ECS’ eventual consistency model, the EcsRunLauncher will now exponentially backoff certain requests for up to a minute while waiting for ECS to reach a consistent state.
  • Memoization is now available from all execution entrypoints. This means that a pipeline tagged for use with memoization can be launched from dagit, the launch CLI, and other modes of external execution, whereas before, memoization was only available via execute_pipeline and the execute CLI.
  • Memoization now works with root input managers. In order to use a root input manager in a pipeline that utilizes memoization, provide a string value to the version argument on the decorator:
from dagster import root_input_manager

@root_input_manager(version="foo")
def my_root_manager(_):
    pass
  • The versioned_fs_io_manager now defaults to using the storage directory of the instance as a base directory.
  • GraphDefinition.to_job now accepts a tags dictionary with non-string values - which will be serialized to JSON. This makes job tags work similarly to pipeline tags and solid tags.

Documentation#

  • The guide for migrating to the experimental graph, job, and op APIs now includes an example of how to migrate a pipeline with a composite solid.

0.12.4#

New#

  • [helm] The compute log manager now defaults to a NoOpComputeLogManager. It did not make sense to default to the LocalComputeLogManager as pipeline runs are executed in ephemeral jobs, so logs could not be retrieved once these jobs were cleaned up. To have compute logs in a Kubernetes environment, users should configure a compute log manager that uses a cloud provider.
  • [helm] The K8sRunLauncher now supports environment variables to be passed in from the current container to the launched Kubernetes job.
  • [examples] Added a new dbt_pipeline to the hacker news example repo, which demonstrates how to run a dbt project within a Dagster pipeline.
  • Changed the default configuration of steps launched by the k8s_job_executor to match the configuration set in the K8sRunLauncher.

Bugfixes#

  • Fixed an issue where dagster gRPC servers failed to load if they did not have permissions to write to a temporary directory.
  • Enabled compression and raised the message receive limit for our gRPC communication. This prevents large pipelines from causing gRPC message limit errors. This limit can now be manually overridden with the DAGSTER_GRPC_MAX_RX_BYTES environment variable.
  • Fixed errors with dagster instance migrate when the asset catalog contains wiped assets.
  • Fixed an issue where backfill jobs with the “Re-execute from failures” option enabled were not picking up the solid selection from the originating failed run.
  • Previously, when using memoization, if every step was memoized already, you would get an error. Now, the run succeeds and runs no steps.
  • [dagster-dbt] If you specify --models, --select, or --exclude flags while configuring the dbt_cli_resource, it will no longer attempt to supply these flags to commands that don’t accept them.
  • [dagstermill] Fixed an issue where yield_result wrote output value to the same file path if output names are the same for different solids.

Community Contributions#

  • Added the ability to customize the TTL and backoff limit on Dagster Kubernetes jobs (thanks @Oliver-Sellwood!)

Experimental#

  • ops can now be used as a config entry in place of solids.
  • Fixed a GraphQL bug in ECS deployments by making the EcsRunLauncher more resilient to ECS’ eventual consistency model.

Documentation#

  • Fixed hyperlink display to be more visible within source code snippets.
  • Added documentation for Run Status Sensor on the Sensors concept page.

0.12.3#

New#

  • The Dagit web app now has a strict Content Security Policy.
  • Introduced a new decorator [@run_status_sensor](https://docs.dagster.io/_apidocs/schedules-sensors#dagster.run_status_sensor) which defines sensors that react to given PipelineRunStatus.
  • You can now specify a solid on build_hook_context. This allows you to access the hook_context.solid parameter.

Bugfixes#

  • dagster’s dependency on docstring-parser has been loosened.
  • @pipeline now pulls its description from the doc string on the decorated function if it is provided.
  • The sensor example generated via dagster new-project now no longer targets a non-existent mode.

Community Contributions#

  • Thanks for the docs typo fix @cvoegele!

Experimental#

  • The “jobs” key is now supported when returning a dict from @repository functions.
  • GraphDefinition.to_job now supports the description argument.
  • Jobs with nested Graph structures no longer fail to load in dagit.
  • Previously, the ECS reference deployment granted its tasks the AmazonECS_FullAccess policy. Now, the attached roles has been more narrowly scoped to only allow the daemon and dagit tasks to interact with the ECS actions required by the EcsRunLauncher.
  • The EcsRunLauncher launches ECS tasks by setting a command override. Previously, if the Task Definition it was using also defined an entrypoint, it would concatenate the entrypoint and the overridden command which would cause launches to fail with Error: Got unexpected extra arguments. Now, it ignores the entrypoint and launches succeed.

Documentation#

  • Fixed a broken link in the sensor testing overview.

0.12.2#

New#

  • Improved Asset catalog load times in Dagit, for Dagster instances that have fully migrated using dagster instance migrate.
  • When using the ScheduleDefinition constructor to instantiate a schedule definition, if a schedule name is not provided, the name of the schedule will now default to the pipeline name, plus “_schedule”, instead of raising an error.

Bugfixes#

  • Fixed a bug where pipeline definition arguments description and solid_retry_policy were getting dropped when using a solid_hook decorator on a pipeline definition (#4355).
  • Fixed an issue where the Dagit frontend wasn’t disabling certain UI elements when launched in read-only mode.
  • Fixed a bug where directly invoking an async solid with type annotations would fail, if called from another async function.

Documentation#

  • Added a guide to migrating from the existing Pipeline, Mode, Preset, and Solid APIs to the new experimental Graph, Job, and Op APIs. Check out the guide here!

0.12.1#

Bugfixes#

  • Fixes implementation issues in @pipeline_failure_sensor that prevented them from working.

0.12.0 “Into The Groove”#

Major Changes#

  • With the new first-class Pipeline Failure sensors, you can now write sensors to perform arbitrary actions when pipelines in your repo fail using @pipeline_failure_sensor. Out-of-the-box sensors are provided to send emails using make_email_on_pipeline_failure_sensor and slack messages using make_slack_on_pipeline_failure_sensor.

    See the Pipeline Failure Sensor docs to learn more.

  • New first-class Asset sensors help you define sensors that launch pipeline runs or notify appropriate stakeholders when specific asset keys are materialized. This pattern also enables Dagster to infer cross-pipeline dependency links. Check out the docs here!

  • Solid-level retries: A new retry_policy argument to the @solid decorator allows you to easily and flexibly control how specific solids in your pipelines will be retried if they fail by setting a RetryPolicy.

  • Writing tests in Dagster is now even easier, using the new suite of direct invocation apis. Solids, resources, hooks, loggers, sensors, and schedules can all be invoked directly to test their behavior. For example, if you have some solid my_solid that you'd like to test on an input, you can now write assert my_solid(1, "foo") == "bar" (rather than explicitly calling execute_solid()).

  • [Experimental] A new set of experimental core APIs. Among many benefits, these changes unify concepts such as Presets and Partition sets, make it easier to reuse common resources within an environment, make it possible to construct test-specific resources outside of your pipeline definition, and more. These changes are significant and impactful, so we encourage you to try them out and let us know how they feel! You can learn more about the specifics here

  • [Experimental] There’s a new reference deployment for running Dagster on AWS ECS and a new EcsRunLauncher that launches each pipeline run in its own ECS Task.

  • [Experimental] There’s a new k8s_job_executor (https://docs.dagster.io/_apidocs/libraries/dagster-k8s#dagster_k8s.k8s_job_executor)which executes each solid of your pipeline in a separate Kubernetes job. This addition means that you can now choose at runtime (https://docs.dagster.io/deployment/guides/kubernetes/deploying-with-helm#executor) between single pod and multi-pod isolation for solids in your run. Previously this was only configurable for the entire deployment- you could either use the K8sRunLauncher with the default executors (in process and multiprocess) for low isolation, or you could use the CeleryK8sRunLauncher with the celery_k8s_job_executor for pod-level isolation. Now, your instance can be configured with the K8sRunLauncher and you can choose between the default executors or the k8s_job_executor.

New since 0.11.16#

  • Using the @schedule, @resource, or @sensor decorator no longer requires a context parameter. If you are not using the context parameter in these, you can now do this:

    @schedule(cron_schedule="\* \* \* \* \*", pipeline_name="my_pipeline")
    def my_schedule():
      return {}
    
    @resource
    def my_resource():
      return "foo"
    
    @sensor(pipeline_name="my_pipeline")
    def my_sensor():
      return RunRequest(run_config={})
    
  • Dynamic mapping and collect features are no longer marked “experimental”. DynamicOutputDefinition and DynamicOutput can now be imported directly from dagster.

  • Added repository_name property on SensorEvaluationContext, which is name of the repository that the sensor belongs to.

  • get_mapping_key is now available on SolidExecutionContext , allowing for discerning which downstream branch of a DynamicOutput you are in.

  • When viewing a run in Dagit, you can now download its debug file directly from the run view. This can be loaded into dagit-debug.

  • [dagster-dbt] A new dbt_cli_resource simplifies the process of working with dbt projects in your pipelines, and allows for a wide range of potential uses. Check out the integration guide for examples!

Bugfixes#

  • Fixed a bug when retry from failure with fan-in solids didn’t load the right input source correctly. Now the fan-in solids can load the persistent source from corresponding previous runs if retry from failure.
  • Fixed a bug in the k8s_job_executor that caused solid tag user defined Kubernetes config to not be applied to the Kubernetes jobs.
  • Fixed an issue in dagstermill when concurrently running pipelines that contain multiple dagstermill solids with inputs of the same name.

Breaking Changes#

  • The deprecated SystemCronScheduler and K8sScheduler schedulers have been removed. All schedules are now executed using the dagster-daemon proess. See the deployment docs for more information about how to use the dagster-daemon process to run your schedules.

  • If you have written a custom run launcher, the arguments to the launch_run function have changed in order to enable faster run launches. launch_run now takes in a LaunchRunContext object. Additionally, run launchers should now obtain the PipelinePythonOrigin to pass as an argument to dagster api execute_run. See the implementation of DockerRunLauncher for an example of the new way to write run launchers.

  • [helm] .Values.dagsterDaemon.queuedRunCoordinator has had its schema altered. It is now referenced at .Values.dagsterDaemon.runCoordinator. Previously, if you set up your run coordinator configuration in the following manner:

    dagsterDaemon:
      queuedRunCoordinator:
        enabled: true
        module: dagster.core.run_coordinator
        class: QueuedRunCoordinator
        config:
          max_concurrent_runs: 25
          tag_concurrency_limits: []
          dequeue_interval_seconds: 30
    

    It is now configured like:

    dagsterDaemon:
      runCoordinator:
        enabled: true
        type: QueuedRunCoordinator
        config:
          queuedRunCoordinator:
          maxConcurrentRuns: 25
          tagConcurrencyLimits: []
          dequeueIntervalSeconds: 30
    
  • The method events_for_asset_key on DagsterInstance has been deprecated and will now issue a warning. This method was previously used in our asset sensor example code. This can be replaced by calls using the new DagsterInstance API get_event_records. The example code in our sensor documentation has been updated to use our new APIs as well.

Community Contributions#

Experimental#

  • You can now configure the EcsRunLauncher to use an existing Task Definition of your choosing. By default, it continues to register its own Task Definition for each run.

0.11.16#

New#

  • In Dagit, a new page has been added for user settings, including feature flags and timezone preferences. It can be accessed via the gear icon in the top right corner of the page.
  • SensorExecutionContext and ScheduleExecutionContext have been renamed to SensorEvaluationContext and ScheduleEvaluationContext, respectively. The old names will be supported until 0.12.0.

Bugfixes#

  • When turning on a schedule in Dagit, if the schedule had an identical name and identical pipeline name to a schedule in another repository in the workspace, both schedules would incorrectly appear to be turned on, due to a client-side rendering bug. The same bug occurred for sensors. This has now been fixed.
  • The “Copy URL” button on a Run view in Dagit was inoperative for users not using Dagit in localhost or https. This has been fixed.
  • Fixed a bug in Dagit where Dagit would leak memory for each websocket connection.
  • When executing pipeline that contains composite solids, the composite solids mistakenly ignored the upstream outputs. This bug was introduced in 0.11.15, and is now fixed.

Community Contributions#

  • Fixed a link to the Kubernetes deployment documentation. Thanks to @jrouly!

Documentation#

0.11.15#

New#

  • The Python GraphQL client now includes a shutdown_repository_location API call that shuts down a gRPC server. This is useful in situations where you want Kubernetes to restart your server and re-create your repository definitions, even though the underlying Python code hasn’t changed (for example, if your pipelines are loaded programatically from a database)

  • io_manager_key and root_manager_key is disallowed on composite solids’ InputDefinitions and OutputDefinitions. Instead, custom IO managers on the solids inside composite solids will be respected:

    @solid(input_defs=[InputDefinition("data", dagster_type=str, root_manager_key="my_root")])
    def inner_solid(_, data):
      return data
    
    @composite_solid
    def my_composite():
      return inner_solid()
    
  • Schedules can now be directly invoked. This is intended to be used for testing. To learn more, see https://docs.dagster.io/master/concepts/partitions-schedules-sensors/schedules#testing-schedules

Bugfixes#

  • Dagster libraries (for example, dagster-postgres or dagster-graphql) are now pinned to the same version as the core dagster package. This should reduce instances of issues due to backwards compatibility problems between Dagster packages.
  • Due to a recent regression, when viewing a launched run in Dagit, the Gantt chart would inaccurately show the run as queued well after it had already started running. This has been fixed, and the Gantt chart will now accurately reflect incoming logs.
  • In some cases, navigation in Dagit led to overfetching a workspace-level GraphQL query that would unexpectedly reload the entire app. The excess fetches are now limited more aggressively, and the loading state will no longer reload the app when workspace data is already available.
  • Previously, execution would fail silently when trying to use memoization with a root input manager. The error message now more clearly states that this is not supported.

Breaking Changes#

  • Invoking a generator solid now yields a generator, and output objects are not unpacked.

    @solid
    def my_solid():
      yield Output("hello")
    
    assert isinstance(list(my_solid())[0], Output)
    

Experimental#

  • Added an experimental EcsRunLauncher. This creates a new ECS Task Definition and launches a new ECS Task for each run. You can use the new ECS Reference Deployment to experiment with the EcsRunLauncher. We’d love your feedback in our #dagster-ecs Slack channel!

Documentation#

0.11.14#

New#

  • Supplying the "metadata" argument to InputDefinitions and OutputDefinitions is no longer considered experimental.
  • The "context" argument can now be omitted for solids that have required resource keys.
  • The S3ComputeLogManager now takes a boolean config argument skip_empty_files, which skips uploading empty log files to S3. This should enable a work around of timeout errors when using the S3ComputeLogManager to persist logs to MinIO object storage.
  • The Helm subchart for user code deployments now allows for extra manifests.
  • Running dagit with flag --suppress-warnings will now ignore all warnings, such as ExperimentalWarnings.
  • PipelineRunStatus, which represents the run status, is now exported in the public API.

Bugfixes#

  • The asset catalog now has better backwards compatibility for supporting deprecated Materialization events. Previously, these events were causing loading errors.

Community Contributions#

  • Improved documentation of the dagster-dbt library with some helpful tips and example code (thanks @makotonium!).
  • Fixed the example code in the dagster-pyspark documentation for providing and accessing the pyspark resource (thanks @Andrew-Crosby!).
  • Helm chart serviceaccounts now allow annotations (thanks @jrouly!).

Documentation#

  • Added section on testing resources (link).
  • Revamped IO manager testing section to use build_input_context and build_output_context APIs (link).

0.11.13#

New#

  • Added an example that demonstrates what a complete repository that takes advantage of many Dagster features might look like. Includes usage of IO Managers, modes / resources, unit tests, several cloud service integrations, and more! Check it out at examples/hacker_news!
  • retry_number is now available on SolidExecutionContext, allowing you to determine within a solid function how many times the solid has been previously retried.
  • Errors that are surfaced during solid execution now have clearer stack traces.
  • When using Postgres or MySQL storage, the database mutations that initialize Dagster tables on startup now happen in atomic transactions, rather than individual SQL queries.
  • For versions >=0.11.13, when specifying the --version flag when installing the Helm chart, the tags for Dagster-provided images in the Helm chart will now default to the current Chart version. For --version <0.11.13, the image tags will still need to be updated properly to use old chart version.
  • Removed the PIPELINE_INIT_FAILURE event type. A failure that occurs during pipeline initialization will now produce a PIPELINE_FAILURE as with all other pipeline failures.

Bugfixes#

  • When viewing run logs in Dagit, in the stdout/stderr log view, switching the filtered step did not work. This has been fixed. Additionally, the filtered step is now present as a URL query parameter.
  • The get_run_status method on the Python GraphQL client now returns a PipelineRunStatus enum instead of the raw string value in order to align with the mypy type annotation. Thanks to Dylan Bienstock for surfacing this bug!
  • When a docstring on a solid doesn’t match the reST, Google, or Numpydoc formats, Dagster no longer raises an error.
  • Fixed a bug where memoized runs would sometimes fail to execute when specifying a non-default IO manager key.

Experimental#

  • Added thek8s_job_executor, which executes solids in separate kubernetes jobs. With the addition of this executor, you can now choose at runtime between single pod and multi-pod isolation for solids in your run. Previously this was only configurable for the entire deployment - you could either use the K8sRunLauncher with the default executors (in_process and multiprocess) for low isolation, or you could use the CeleryK8sRunLauncher with the celery_k8s_job_executor for pod-level isolation. Now, your instance can be configured with the K8sRunLauncher and you can choose between the default executors or the k8s_job_executor.
  • The DagsterGraphQLClient now allows you to specify whether to use HTTP or HTTPS when connecting to the GraphQL server. In addition, error messages during query execution or connecting to dagit are now clearer. Thanks to @emily-hawkins for raising this issue!
  • Added experimental hook invocation functionality. Invoking a hook will call the underlying decorated function. For example:
  from dagster import build_hook_context

  my_hook(build_hook_context(resources={"foo_resource": "foo"}))
  • Resources can now be directly invoked as functions. Invoking a resource will call the underlying decorated initialization function.
  from dagster import build_init_resource_context

  @resource(config_schema=str)
  def my_basic_resource(init_context):
      return init_context.resource_config

  context = build_init_resource_context(config="foo")
  assert my_basic_resource(context) == "foo"
  • Improved the error message when a pipeline definition is incorrectly invoked as a function.

Documentation#

0.11.12#

Bugfixes#

  • ScheduleDefinition and SensorDefinition now carry over properties from functions decorated by @sensor and @schedule. Ie: docstrings.
  • Fixed a bug with configured on resources where the version set on a ResourceDefinition was not being passed to the ResourceDefinition created by the call to configured.
  • Previously, if an error was raised in an IOManager handle_output implementation that was a generator, it would not be wrapped DagsterExecutionHandleOutputError. Now, it is wrapped.
  • Dagit will now gracefully degrade if websockets are not available. Previously launching runs and viewing the event logs would block on a websocket conection.

Experimental#

  • Added an example of run attribution via a custom run coordinator, which reads a user’s email from HTTP headers on the Dagster GraphQL server and attaches the email as a run tag. Custom run coordinator are also now specifiable in the Helm chart, under queuedRunCoordinator. See the docs for more information on setup.
  • RetryPolicy now supports backoff and jitter settings, to allow for modulating the delay as a function of attempt number and randomness.

Documentation#

0.11.11#

New#

  • [Helm] Added dagit.enableReadOnly . When enabled, a separate Dagit instance is deployed in —read-only mode. You can use this feature to serve Dagit to users who you do not want to able to kick off new runs or make other changes to application state.
  • [dagstermill] Dagstermill is now compatible with current versions of papermill (2.x). Previously we required papermill to be pinned to 1.x.
  • Added a new metadata type that links to the asset catalog, which can be invoked using EventMetadata.asset.
  • Added a new log event type LOGS_CAPTURED, which explicitly links to the captured stdout/stderr logs for a given step, as determined by the configured ComputeLogManager on the Dagster instance. Previously, these links were available on the STEP_START event.
  • The network key on DockerRunLauncher config can now be sourced from an environment variable.
  • The Workspace section of the Status page in Dagit now shows more metadata about your workspace, including the python file, python package, and Docker image of each of your repository locations.
  • In Dagit, settings for how executions are viewed now persist across sessions.

Breaking Changes#

  • The get_execution_data method of SensorDefinition and ScheduleDefinition has been renamed to evaluate_tick. We expect few to no users of the previous name, and are renaming to prepare for improved testing support for schedules and sensors.

Community Contributions#

  • README has been updated to remove typos (thanks @gogi2811).
  • Configured API doc examples have been fixed (thanks @jrouly).

Experimental#

  • Documentation on testing sensors using experimental build_sensor_context API. See Testing sensors.

Bugfixes#

  • Some mypy errors encountered when using the built-in Dagster types (e.g., dagster.Int ) as type annotations on functions decorated with @solid have been resolved.
  • Fixed an issue where the K8sRunLauncher sometimes hanged while launching a run due to holding a stale Kubernetes client.
  • Fixed an issue with direct solid invocation where default config values would not be applied.
  • Fixed a bug where resource dependencies to io managers were not being initialized during memoization.
  • Dagit can once again override pipeline tags that were set on the definition, and UI clarity around the override behavior has been improved.
  • Markdown event metadata rendering in dagit has been repaired.

Documentation#

0.11.10#

New#

  • Sensors can now set a string cursor using context.update_cursor(str_value) that is persisted across evaluations to save unnecessary computation. This persisted string value is made available on the context as context.cursor. Previously, we encouraged cursor-like behavior by exposing last_run_key on the sensor context, to keep track of the last time the sensor successfully requested a run. This, however, was not useful for avoiding unnecessary computation when the sensor evaluation did not result in a run request.
  • Dagit may now be run in --read-only mode, which will disable mutations in the user interface and on the server. You can use this feature to run instances of Dagit that are visible to users who you do not want to able to kick off new runs or make other changes to application state.
  • In dagster-pandas, the event_metadata_fn parameter to the function create_dagster_pandas_dataframe_type may now return a dictionary of EventMetadata values, keyed by their string labels. This should now be consistent with the parameters accepted by Dagster events, including the TypeCheck event.
# old
MyDataFrame = create_dagster_pandas_dataframe_type(
    "MyDataFrame",
    event_metadata_fn=lambda df: [
        EventMetadataEntry.int(len(df), "number of rows"),
        EventMetadataEntry.int(len(df.columns), "number of columns"),
    ]
)

# new
MyDataFrame = create_dagster_pandas_dataframe_type(
    "MyDataFrame",
    event_metadata_fn=lambda df: {
        "number of rows": len(df),
        "number of columns": len(dataframe.columns),
    },
)
  • dagster-pandas’ PandasColumn.datetime_column() now has a new tz parameter, allowing you to constrain the column to a specific timezone (thanks @mrdavidlaing!)
  • The DagsterGraphQLClient now takes in an optional transport argument, which may be useful in cases where you need to authenticate your GQL requests:
authed_client = DagsterGraphQLClient(
    "my_dagit_url.com",
    transport=RequestsHTTPTransport(..., auth=<some auth>),
)
  • Added an ecr_public_resource to get login credentials for the AWS ECR Public Gallery. This is useful if any of your pipelines need to push images.
  • Failed backfills may now be resumed in Dagit, by putting them back into a “requested” state. These backfill jobs should then be picked up by the backfill daemon, which will then attempt to create and submit runs for any of the outstanding requested partitions . This should help backfill jobs recover from any deployment or framework issues that occurred during the backfill prior to all the runs being launched. This will not, however, attempt to re-execute any of the individual pipeline runs that were successfully launched but resulted in a pipeline failure.
  • In the run log viewer in Dagit, links to asset materializations now include the timestamp for that materialization. This will bring you directly to the state of that asset at that specific time.
  • The Databricks step launcher now includes a max_completion_wait_time_seconds configuration option, which controls how long it will wait for a Databricks job to complete before exiting.

Experimental#

  • Solids can now be invoked outside of composition. If your solid has a context argument, the build_solid_context function can be used to provide a context to the invocation.
from dagster import build_solid_context

@solid
def basic_solid():
    return "foo"

assert basic_solid() == 5

@solid
def add_one(x):
    return x + 1

assert add_one(5) == 6

@solid(required_resource_keys={"foo_resource"})
def solid_reqs_resources(context):
    return context.resources.foo_resource + "bar"

context = build_solid_context(resources={"foo_resource": "foo"})
assert solid_reqs_resources(context) == "foobar"
  • build_schedule_context allows you to build a ScheduleExecutionContext using a DagsterInstance. This can be used to test schedules.
from dagster import build_schedule_context

with DagsterInstance.get() as instance:
    context = build_schedule_context(instance)
    my_schedule.get_execution_data(context)
  • build_sensor_context allows you to build a SensorExecutionContext using a DagsterInstance. This can be used to test sensors.

from dagster import build_sensor_context

with DagsterInstance.get() as instance:
    context = build_sensor_context(instance)
    my_sensor.get_execution_data(context)
  • build_input_context and build_output_context allow you to construct InputContext and OutputContext respectively. This can be used to test IO managers.
from dagster import build_input_context, build_output_context

io_manager = MyIoManager()

io_manager.load_input(build_input_context())
io_manager.handle_output(build_output_context(), val)
  • Resources can be provided to either of these functions. If you are using context manager resources, then build_input_context/build_output_context must be used as a context manager.
with build_input_context(resources={"cm_resource": my_cm_resource}) as context:
    io_manager.load_input(context)
  • validate_run_config can be used to validate a run config blob against a pipeline definition & mode. If the run config is invalid for the pipeline and mode, this function will throw an error, and if correct, this function will return a dictionary representing the validated run config that Dagster uses during execution.
validate_run_config(
    {"solids": {"a": {"config": {"foo": "bar"}}}},
    pipeline_contains_a
) # usage for pipeline that requires config

validate_run_config(
    pipeline_no_required_config
) # usage for pipeline that has no required config
  • The ability to set a RetryPolicy has been added. This allows you to declare automatic retry behavior when exceptions occur during solid execution. You can set retry_policy on a solid invocation, @solid definition, or @pipeline definition.
@solid(retry_policy=RetryPolicy(max_retries=3, delay=5))
def fickle_solid(): # ...

@pipeline( # set a default policy for all solids
solid_retry_policy=RetryPolicy()
)
def my_pipeline(): # will use the pipelines policy by default
    some_solid()

    # solid definition takes precedence over pipeline default
    fickle_solid()

    # invocation setting takes precedence over definition
    fickle_solid.with_retry_policy(RetryPolicy(max_retries=2))

Bugfixes#

  • Previously, asset materializations were not working in dagster-dbt for dbt >= 0.19.0. This has been fixed.
  • Previously, using the dagster/priority tag directly on pipeline definitions would cause an error. This has been fixed.
  • In dagster-pandas, the create_dagster_pandas_dataframe_type() function would, in some scenarios, not use the specified materializer argument when provided. This has been fixed (thanks @drewsonne!)
  • dagster-graphql --remote now sends the query and variables as post body data, avoiding uri length limit issues.
  • In the Dagit pipeline definition view, we no longer render config nubs for solids that do not need them.
  • In the run log viewer in Dagit, truncated row contents (including errors with long stack traces) now have a larger and clearer button to expand the full content in a dialog.
  • [dagster-mysql] Fixed a bug where database connections accumulated by sqlalchemy.Engine objects would be invalidated after 8 hours of idle time due to MySQL’s default configuration, resulting in an sqlalchemy.exc.OperationalError when attempting to view pages in Dagit in long-running deployments.

Documentation#

  • In 0.11.9, context was made an optional argument on the function decorated by @solid. The solids throughout tutorials and snippets that do not need a context argument have been altered to omit that argument, and better reflect this change.
  • In a previous docs revision, a tutorial section on accessing resources within solids was removed. This has been re-added to the site.

0.11.9#

New#

  • In Dagit, assets can now be viewed with an asOf URL parameter, which shows a snapshot of the asset at the provided timestamp, including parent materializations as of that time.
  • [Dagit] Queries and Mutations now use HTTP instead of a websocket-based connection.

Bugfixes#

  • A regression in 0.11.8 where composites would fail to render in the right side bar in Dagit has been fixed.
  • A dependency conflict in make dev_install has been fixed.
  • [dagster-python-client] reload_repository_location and submit_pipeline_execution have been fixed - the underlying GraphQL queries had a missing inline fragment case.

Community Contributions#

  • AWS S3 resources now support named profiles (thanks @deveshi!)
  • The Dagit ingress path is now configurable in our Helm charts (thanks @orf!)
  • Dagstermill’s use of temporary files is now supported across operating systems (thanks @slamer59!)
  • Deploying with Helm documentation has been updated to reflect the correct name for “dagster-user-deployments” (thanks @hebo-yang!)
  • Deploying with Helm documentation has been updated to suggest naming your release “dagster” (thanks @orf!)
  • Solids documentation has been updated to remove a typo (thanks @dwallace0723!)
  • Schedules documentation has been updated to remove a typo (thanks @gdoron!)

0.11.8#

New#

  • The @solid decorator can now wrap a function without a context argument, if no context information is required. For example, you can now do:
@solid
def basic_solid():
    return 5

@solid
def solid_with_inputs(x, y):
    return x + y

however, if your solid requires config or resources, then you will receive an error at definition time.

  • It is now simpler to provide structured metadata on events. Events that take a metadata_entries argument may now instead accept a metadata argument, which should allow for a more convenient API. The metadata argument takes a dictionary with string labels as keys and EventMetadata values. Some base types (str, int, float, and JSON-serializable list/dicts) are also accepted as values and will be automatically coerced to the appropriate EventMetadata value. For example:
@solid
def old_metadata_entries_solid(df):
   yield AssetMaterialization(
       "my_asset",
       metadata_entries=[
           EventMetadataEntry.text("users_table", "table name"),
           EventMetadataEntry.int(len(df), "row count"),
           EventMetadataEntry.url("http://mysite/users_table", "data url")
       ]
   )

@solid
def new_metadata_solid(df):
    yield AssetMaterialization(
       "my_asset",
       metadata={
           "table name": "users_table",
           "row count": len(df),
           "data url": EventMetadata.url("http://mysite/users_table")
       }
   )

  • The dagster-daemon process now has a --heartbeat-tolerance argument that allows you to configure how long the process can run before shutting itself down due to a hanging thread. This parameter can be used to troubleshoot failures with the daemon process.
  • When creating a schedule from a partition set using PartitionSetDefinition.create_schedule_definition, the partition_selector function that determines which partition to use for a given schedule tick can now return a list of partitions or a single partition, allowing you to create schedules that create multiple runs for each schedule tick.

Bugfixes#

  • Runs submitted via backfills can now correctly resolve the source run id when loading inputs from previous runs instead of encountering an unexpected KeyError.
  • Using nested Dict and Set types for solid inputs/outputs now works as expected. Previously a structure like Dict[str, Dict[str, Dict[str, SomeClass]]] could result in confusing errors.
  • Dagstermill now correctly loads the config for aliased solids instead of loading from the incorrect place which would result in empty solid_config.
  • Error messages when incomplete run config is supplied are now more accurate and precise.
  • An issue that would cause map and collect steps downstream of other map and collect steps to mysteriously not execute when using multiprocess executors has been resolved.

Documentation#

0.11.7#

New#

  • For pipelines with tags defined in code, display these tags in the Dagit playground.
  • On the Dagit asset list page, use a polling query to regularly refresh the asset list.
  • When viewing the Dagit asset list, persist the user’s preference between the flattened list view and the directory structure view.
  • Added solid_exception on HookContext which returns the actual exception object thrown in a failed solid. See the example “Accessing failure information in a failure hook“ for more details.
  • Added solid_output_values on HookContext which returns the computed output values.
  • Added make_values_resource helper for defining a resource that passes in user-defined values. This is useful when you want multiple solids to share values. See the example for more details.
  • StartupProbes can now be set to disabled in Helm charts. This is useful if you’re running on a version earlier than Kubernetes 1.16.

Bugfixes#

  • Fixed an issue where partial re-execution was not referencing the right source run and failed to load the correct persisted outputs.
  • When running Dagit with --path-prefix, our color-coded favicons denoting the success or failure of a run were not loading properly. This has been fixed.
  • Hooks and tags defined on solid invocations now work correctly when executing a pipeline with a solid subselection
  • Fixed an issue where heartbeats from the dagster-daemon process would not appear on the Status page in dagit until the process had been running for 30 seconds
  • When filtering runs, Dagit now suggests all “status:” values and other auto-completions in a scrolling list
  • Fixed asset catalog where nested directory structure links flipped back to the flat view structure

Community Contributions#

  • [Helm] The Dagit service port is now configurable (thanks @trevenrawr!)
  • [Docs] Cleanup & updating visual aids (thanks @keypointt!)

Experimental#

  • [Dagster-GraphQL] Added an official Python Client for Dagster’s GraphQL API (GH issue #2674). Docs can be found here

Documentation#

  • Fixed a confusingly-worded header on the Solids/Pipelines Testing page

0.11.6#

Breaking Changes#

  • DagsterInstance.get() no longer falls back to an ephemeral instance if DAGSTER_HOME is not set. We don’t expect this to break normal workflows. This change allows our tooling to be more consistent around it’s expectations. If you were relying on getting an ephemeral instance you can use DagsterInstance.ephemeral() directly.
  • Undocumented attributes on HookContext have been removed. step_key and mode_def have been documented as attributes.

New#

  • Added a permanent, linkable panel in the Run view in Dagit to display the raw compute logs.
  • Added more descriptive / actionable error messages throughout the config system.
  • When viewing a partitioned asset in Dagit, display only the most recent materialization for a partition, with a link to view previous materializations in a dialog.
  • When viewing a run in Dagit, individual log line timestamps now have permalinks. When loading a timestamp permalink, the log table will highlight and scroll directly to that line.
  • The default config_schema for all configurable objects - solids, resources, IO managers, composite solids, executors, loggers - is now Any. This means that you can now use configuration without explicitly providing a config_schema. Refer to the docs for more details: https://docs.dagster.io/concepts/configuration/config-schema.
  • When launching an out of process run, resources are no longer initialized in the orchestrating process. This should give a performance boost for those using out of process execution with heavy resources (ie, spark context).
  • input_defs and output_defs on @solid will now flexibly combine data that can be inferred from the function signature that is not declared explicitly via InputDefinition / OutputDefinition. This allows for more concise defining of solids with reduced repetition of information.
  • [Helm] Postgres storage configuration now supports connection string parameter keywords.
  • The Status page in Dagit will now display errors that were surfaced in the dagster-daemon process within the last 5 minutes. Previously, it would only display errors from the last 30 seconds.
  • Hanging sensors and schedule functions will now raise a timeout exception after 60 seconds, instead of crashing the dagster-daemon process.
  • The DockerRunLauncher now accepts a container_kwargs config parameter, allowing you to specify any argument to the run container that can be passed into the Docker containers.run method. See https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.ContainerCollection.run for the full list of available options.
  • Added clearer error messages for when a Partition cannot be found in a Partition Set.
  • The celery_k8s_job_executor now accepts a job_wait_timeout allowing you to override the default of 24 hours.

Bugfixes#

  • Fixed the raw compute logs in Dagit, which were not live updating as the selected step was executing.
  • Fixed broken links in the Backfill table in Dagit when Dagit is started with a --prefix-path argument.
  • Showed failed status of backfills in the Backfill table in Dagit, along with an error stack trace. Previously, the backfill jobs were stuck in a Requested state.
  • Previously, if you passed a non-required Field to the output_config_schema or input_config_schema arguments of @io_manager, the config would still be required. Now, the config is not required.
  • Fixed nested subdirectory views in the Assets catalog, where the view switcher would flip back from the directory view to the flat view when navigating into subdirectories.
  • Fixed an issue where the dagster-daemon process would crash if it experienced a transient connection error while connecting to the Dagster database.
  • Fixed an issue where the dagster-airflow scaffold command would raise an exception if a preset was specified.
  • Fixed an issue where Dagit was not including the error stack trace in the Status page when a repository failed to load.

0.11.5#

New#

  • Resources in a ModeDefinition that are not required by a pipeline no longer require runtime configuration. This should make it easier to share modes or resources among multiple pipelines.
  • Dagstermill solids now support retries when a RetryRequested is yielded from a notebook using dagstermill.yield_event.
  • In Dagit, the asset catalog now supports both a flattened view of all assets as well as a hierarchical directory view.
  • In Dagit, the asset catalog now supports bulk wiping of assets.

Bugfixes#

  • In the Dagit left nav, schedules and sensors accurately reflect the filtered repositories.
  • When executing a pipeline with a subset of solids, the config for solids not included in the subset is correctly made optional in more cases.
  • URLs were sometimes not prefixed correctly when running Dagit using the --path-prefix option, leading to failed GraphQL requests and broken pages. This bug was introduced in 0.11.4, and is now fixed.
  • The update_timestamp column in the runs table is now updated with a UTC timezone, making it consistent with the create_timestamp column.
  • In Dagit, the main content pane now renders correctly on ultra-wide displays.
  • The partition run matrix on the pipeline partition tab now shows step results for composite solids and dynamically mapped solids. Previously, the step status was not shown at all for these solids.
  • Removed dependency constraint of dagster-pandas on pandas. You can now include any version of pandas. (https://github.com/dagster-io/dagster/issues/3350)
  • Removed dependency on requests in dagster. Now only dagit depends on requests.
  • Removed dependency on pyrsistent in dagster.

Documentation#

  • Updated the “Deploying to Airflow” documentation to reflect the current state of the system.

0.11.4#

Community Contributions#

  • Fix typo in --config help message (thanks @pawelad !)

Breaking Changes#

  • Previously, when retrieving the outputs from a run of execute_pipeline, the system would use the io manager that handled each output to perform the retrieval. Now, when using execute_pipeline with the default in-process executor, the system directly captures the outputs of solids for use with the result object returned by execute_pipeline. This may lead to slightly different behavior when retrieving outputs if switching between executors and using custom IO managers.

New#

  • The K8sRunLauncher and CeleryK8sRunLauncher now add a dagster/image tag to pipeline runs to document the image used. The DockerRunLauncher has also been modified to use this tag (previously it used docker/image).
  • In Dagit, the left navigation is now collapsible on smaller viewports. You can use the . key shortcut to toggle visibility.
  • @solid can now decorate async def functions.

Bugfixes#

  • In Dagit, a GraphQL error on partition sets related to missing fragment PartitionGraphFragment has been fixed.
  • The compute log manager now handles base directories containing spaces in the path.
  • Fixed a bug where re-execution was not working if the initial execution failed, and execution was delegated to other machines/process (e.g. using the multiprocess executor)
  • The same solid can now collect over multiple dynamic outputs

0.11.3#

Breaking Changes#

  • Schedules and sensors that target a pipeline_name that is not present in the current repository will now error out when the repository is created.

New#

  • Assets are now included in Dagit global search. The search bar has also been moved to the top of the app.
  • [helm] generatePostgresqlPasswordSecret toggle was added to allow the Helm chart to reference an external secret containing the Postgresql password (thanks @PenguinToast !)
  • [helm] The Dagster Helm chart is now hosted on Artifact Hub.
  • [helm] The workspace can now be specified under dagit.workspace, which can be useful if you are managing your user deployments in a separate Helm release.

Bugfixes#

  • In Dagit, toggling schedules and sensors on or off will now immediately update the green dot in the left navigation, without requiring a refresh.
  • When evaluating dict values in run_config targeting Permissive / dict config schemas, the ordering is now preserved.
  • Integer values for EventMetadataEntry.int greater than 32 bits no longer cause dagit errors.
  • PresetDefinition.with_additional_config no longer errors if the base config was empty (thanks @esztermarton !)
  • Fixed limitation on gRPC message size when evaluating run requests for sensors, schedules, and backfills. Previously, a gRPC error would be thrown with status code StatusCode.RESOURCE_EXHAUSTED for a large number of run requests, especially when the requested run configs were large.
  • Changed backfill job status to reflect the number of successful runs against the number of partitions requested instead of the number of runs requested. Normally these two numbers are the same, but they can differ if a pipeline run initiated by the backfill job is re-executed manually.

Documentation#

  • Corrections from the community - thanks @mrdavidlaing & @a-cid !

0.11.2#

Community Contributions

  • dagster new project now scaffolds setup.py using your local dagster pip version (thanks @taljaards!)
  • Fixed an issue where legacy examples were not ported over to the new documentation site (thanks @keypointt!)

New

  • If a solid-decorated function has a docstring, and no description is provided to the solid decorator, the docstring will now be used as the solid’s description.

Bugfixes

  • In 0.11.0, we introduced the ability to auto-generate Dagster Types from PEP 484 type annotations on solid arguments and return values. However, when clicked on in Dagit, these types would show “Type Not Found” instead of rendering a description. This has been fixed.
  • Fixed an issue where the dagster api execute_step will mistakenly skip a step and output a non-DagsterEvent log. This affected the celery_k8s_job_executor.
  • Fixed an issue where NaN floats were not properly handled by Dagit metadata entries.
  • Fixed an issue where Dagit run tags were unclickable.
  • Fixed an issue where backfills from failures were not able to be scheduled from Dagit.

Integrations

  • [Helm] A global service account name can now be specified, which will result in the same service account name to be referenced across all parts of the Dagster Kubernetes deployment.
  • [Helm] Fixed an issue where user deployments did not update, even if their dependent config maps had changed.

0.11.1#

Community Contributions

  • Fixed dagster new-project, which broke on the 0.11.0 release (Thank you @saulius!)
  • Docs fixes (Thanks @michaellynton and @zuik!)

New

  • The left navigation in Dagit now allows viewing more than one repository at a time. Click “Filter” to choose which repositories to show.
  • In dagster-celery-k8s, you can now specify a custom container image to use for execution in executor config. This image will take precedence over the image used for the user code deployment.

Bugfixes

  • Previously, fonts were not served correctly in Dagit when using the --path-prefix option. Custom fonts and their CSS have now been removed, and system fonts are now used for both normal and monospace text.
  • In Dagit, table borders are now visible in Safari.
  • Stopping and starting a sensor was preventing future sensor evaluations due to a timezone issue when calculating the minimum interval from the last tick timestamp. This is now fixed.
  • The blank state for the backfill table is now updated to accurately describe the empty state.
  • Asset catalog entries were returning an error if they had not been recently materialized since (since 0.11.0). Our asset queries are now backwards compatible to read from old materializations.
  • Backfills can now successfully be created with step selections even for partitions that did not have an existing run.
  • Backfill progress were sometimes showing negative counts for the “Skipped” category, when backfill runs were manually re-executed. This has now been amended to adjust the total run counts to include manually re-executed runs.

0.11.0#

Major Changes#

  • MySQL is now supported as a backend for storages you can now run your Dagster Instance on top of MySQL instead of Postgres. See the docs for how to configure MySQL for Event Log Storage, Run Storage, and Schedule Storage.
  • A new backfills page in Dagit lets you monitor and cancel currently running backfills. Backfills are now managed by the Dagster Daemon, which means you can launch backfills over thousands of partitions without risking crashing your Dagit server.
  • [Experimental] Dagster now helps you track the lineage of assets. You can attach AssetKeys to solid outputs through either the OutputDefinition or IOManager, which allows Dagster to automatically generate asset lineage information for assets referenced in this way. Direct parents of an asset will appear in the Dagit Asset Catalog. See the asset docs to learn more.
  • [Experimental] A collect operation for dynamic orchestration allows you to run solids that take a set of dynamically mapped outputs as an input. Building on the dynamic orchestration features of DynamicOutput and map from the last release, this release includes the ability to collect over dynamically mapped outputs. You can see an example here.
  • Dagster has a new documentation site. The URL is still https://docs.dagster.io, but the site has a new design and updated content. If you’re on an older version of Dagster, you can still view pre-0.11.0 documentation at https://legacy-docs.dagster.io.
  • dagster new-project is a new CLI command that generates a Dagster project with skeleton code on your filesystem. Learn how to use it here.

Additions#

Core#

  • Sensors and Schedules
    • Added a partition_days_offset argument to the @daily_schedule decorator that allows you to customize which partition is used for each execution of your schedule. The default value of this parameter is 1, which means that a schedule that runs on day N will fill in the partition for day N-1. To create a schedule that uses the partition for the current day, set this parameter to 0, or increase it to make the schedule use an earlier day’s partition. Similar arguments have also been added for the other partitioned schedule decorators (@monthly_schedule, @weekly_schedule, and @hourly_schedule).ar
    • Both sensors and schedule definitions support a description parameter that takes in a human-readable string description and displays it on the corresponding landing page in Dagit.
  • Assets
    • [Experimental] AssetMaterialization now accepts a tags argument. Tags can be used to filter assets in Dagit.
    • Added support for assets to the default SQLite event log storage.
  • Daemon
    • The QueuedRunCoordinator daemon is now more resilient to errors while dequeuing runs. Previously runs which could not launch would block the queue. They will now be marked as failed and removed from the queue.
    • The dagster-daemon process uses fewer resources and spins up fewer subprocesses to load pipeline information. Previously, the scheduler, sensor, and run queue daemon each spun up their own process for this–now they share a single process.
    • The dagster-daemon process now runs each of its daemons in its own thread. This allows the scheduler, sensor loop, and daemon for launching queued runs to run in parallel, without slowing each other down.
  • Deployment
    • When specifying the location of a gRPC server in your workspace.yaml file to load your pipelines, you can now specify an environment variable for the server’s hostname and port.
    • When deploying your own gRPC server for your pipelines, you can now specify that connecting to that server should use a secure SSL connection.
  • When a solid-decorated function has a Python type annotation and no Dagster type has been explicitly registered for that Python type, Dagster now automatically constructs a corresponding Dagster type instead of raising an error.
  • Added a dagster run delete CLI command to delete a run and its associated event log entries.
  • fs_io_manager now defaults the base directory to base_dir via the Dagster instance’s local_artifact_storage configuration. Previously, it defaulted to the directory where the pipeline was executed.
  • When user code raises an error inside handle_output, load_input, or a type check function, the log output now includes context about which input or output the error occurred during.
  • We have added the BoolSource config type (similar to the StringSource type). The config value for this type can be a boolean literal or a pointer to an environment variable that is set to a boolean value.
  • When trying to run a pipeline where every step has been memoized, you now get a DagsterNoStepsToExecuteException.
  • The OutputContext passed to the has_output method of MemoizableIOManager now includes a working log.

Dagit#

  • After manually reloading the current repository, users will now be prompted to regenerate preset-based or partition-set-based run configs in the Playground view. This helps ensure that the generated run config is up to date when launching new runs. The prompt does not occur when the repository is automatically reloaded.
  • Added ability to preview runs for upcoming schedule ticks.
  • Dagit now has a global search feature in the left navigation, allowing you to jump quickly to pipelines, schedules, sensors, and partition sets across your workspace. You can trigger search by clicking the search input or with the / keyboard shortcut.
  • Timestamps in Dagit have been updated to be more consistent throughout the app, and are now localized based on your browser’s settings.
  • In Dagit, a repository location reload button is now available in the header of every pipeline, schedule, and sensor page.
  • You can now makes changes to your workspace.yaml file without restarting Dagit. To reload your workspace, navigate to the Status page and press the “Reload all” button in the Workspace section.
  • When viewing a run in Dagit, log filtering behavior has been improved. step and type filtering now offers fuzzy search, all log event types are now searchable, and visual bugs within the input have been repaired. Additionally, the default setting for “Hide non-matches” has been flipped to true.
  • When using a grpc_server repository location, Dagit will automatically detect changes and prompt you to reload when the remote server updates.
  • When launching a backfill from Dagit, the “Re-execute From Last Run” option has been removed, because it had confusing semantics. “Re-execute From Failure” now includes a tooltip.
  • Added a secondary index to improve performance when querying run status.
  • The asset catalog now displays a flattened view of all assets, along with a filter field. Tags from AssetMaterializations can be used to filter the catalog view.
  • The asset catalog now enables wiping an individual assets from an action in the menu. Bulk wipes of assets is still only supported with the CLI command dagster asset wipe.

Integrations#

  • [dagster-snowflake] snowflake_resource can now be configured to use the SQLAlchemy connector (thanks @basilvetas!)
  • [dagster-pagerduty / dagster-slack] Added built-in hook integrations to create Pagerduty/Slack alerts when solids fail.
  • [dagstermill] Users can now specify custom tags & descriptions for notebook solids.
  • [dagster-dbt] The dbt commands seed and docs generate are now available as solids in the library dagster-dbt. (thanks @dehume-drizly!)
  • [dagster-spark] - The dagster-spark config schemas now support loading values for all fields via environment variables.
  • [dagster-gcp] The gcs_pickle_io_manager now also retries on 403 Forbidden errors, which previously would only retry on 429 TooManyRequests.

Kubernetes/Helm#

  • Users can set Kubernetes labels on Celery worker deployments
  • Users can set environment variables for Flower deployment
  • The Redis helm chart is now included as an optional dagster helm chart dependency
  • K8sRunLauncher and CeleryK8sRunLauncher no longer reload the pipeline being executed just before launching it. The previous behavior ensured that the latest version of the pipeline was always being used, but was inconsistent with other run launchers. Instead, to ensure that you’re running the latest version of your pipeline, you can refresh your repository in Dagit by pressing the button next to the repository name.
  • Added a flag to the Dagster helm chart that lets you specify that the cluster already has a redis server available, so the Helm chart does not need to create one in order to use redis as a messaging queue. For more information, see the Helm chart’s values.yaml file.
  • Celery queues can now be configured with different node selectors. Previously, configuring a node selector applied it to all Celery queues.
  • When setting userDeployments.deployments in the Helm chart, replicaCount now defaults to 1 if not specified.
  • Changed our weekly docker image releases (the default images in the helm chart). dagster/dagster-k8s and dagster/dagster-celery-k8s can be used for all processes which don't require user code (Dagit, Daemon, and Celery workers when using the CeleryK8sExecutor). user-code-example can be used for a sample user repository. The prior images (k8s-dagit, k8s-celery-worker, k8s-example) are deprecated.
  • All images used in our Helm chart are now fully qualified, including a registry name. If you are encountering rate limits when attempting to pull images from DockerHub, you can now edit the Helm chart to pull from a registry of your choice.
  • We now officially use Helm 3 to manage our Dagster Helm chart.
  • We are now publishing the dagster-k8s, dagster-celery-k8s, user-code-example, and k8s-dagit-example images to a public ECR registry in addition to DockerHub. If you are encountering rate limits when attempting to pull images from DockerHub, you should now be able to pull these images from public.ecr.aws/dagster.
  • .Values.dagsterHome is now a global variable, available at .Values.global.dagsterHome.
  • .Values.global.postgresqlSecretName has been introduced, for subcharts to access the Dagster Helm chart’s generated Postgres secret properly.
  • .Values.userDeployments has been renamed .Values.dagster-user-deployments to reference the subchart’s values. When using Dagster User Deployments, enabling .Values.dagster-user-deployments.enabled will create a workspace.yaml for Dagit to locate gRPC servers with user code. To create the actual gRPC servers, .Values.dagster-user-deployments.enableSubchart should be enabled. To manage the gRPC servers in a separate Helm release, .Values.dagster-user-deployments.enableSubchart should be disabled, and the subchart should be deployed in its own helm release.

Breaking changes#

  • Schedules now run in UTC (instead of the system timezone) if no timezone has been set on the schedule. If you’re using a deprecated scheduler like SystemCronScheduler or K8sScheduler, we recommend that you switch to the native Dagster scheduler. The deprecated schedulers will be removed in the next Dagster release.

  • Names provided to alias on solids now enforce the same naming rules as solids. You may have to update provided names to meet these requirements.

  • The retries method on Executor should now return a RetryMode instead of a Retries. This will only affect custom Executor classes.

  • Submitting partition backfills in Dagit now requires dagster-daemon to be running. The instance setting in dagster.yaml to optionally enable daemon-based backfills has been removed, because all backfills are now daemon-based backfills.

# removed, no longer a valid setting in dagster.yaml
    backfill:
      daemon_enabled: true

The corresponding value flag dagsterDaemon.backfill.enabled has also been removed from the Dagster helm chart.

  • The sensor daemon interval settings in dagster.yaml has been removed. The sensor daemon now runs in a continuous loop so this customization is no longer useful.
# removed, no longer a valid setting in dagster.yaml
    sensor_settings:
      interval_seconds: 10

Removal of deprecated APIs#

  • The instance argument to RunLauncher.launch_run has been removed. If you have written a custom RunLauncher, you’ll need to update the signature of that method. You can still access the DagsterInstance on the RunLauncher via the _instance parameter.
  • The has_config_entry, has_configurable_inputs, and has_configurable_outputs properties of solid and composite_solid have been removed.
  • The deprecated optionality of the name argument to PipelineDefinition has been removed, and the argument is now required.
  • The execute_run_with_structured_logs and execute_step_with_structured_logs internal CLI entry points have been removed. Use execute_run or execute_step instead.
  • The python_environment key has been removed from workspace.yaml. Instead, to specify that a repository location should use a custom python environment, set the executable_path key within a python_file, python_module, or python_package key. See the docs for more information on configuring your workspace.yaml file.
  • [dagster-dask] The deprecated schema for reading or materializing dataframes has been removed. Use the read or to keys accordingly.

0.10.9#

Bugfixes

  • Fixed an issue where postgres databases were unable to initialize the Dagster schema or migrate to a newer version of the Dagster schema. (Thanks @wingyplus for submitting the fix!)

0.10.8#

Community Contributions

  • [dagster-dbt] The dbt commands seed and docs generate are now available as solids in the library dagster-dbt. (thanks @dehume-drizly!)

New

  • Dagit now has a global search feature in the left navigation, allowing you to jump quickly to pipelines, schedules, and sensors across your workspace. You can trigger search by clicking the search input or with the / keyboard shortcut.

  • Timestamps in Dagit have been updated to be more consistent throughout the app, and are now localized based on your browser’s settings.

  • Adding SQLPollingEventWatcher for alternatives to filesystem or DB-specific listen/notify functionality

  • We have added the BoolSource config type (similar to the StringSource type). The config value for this type can be a boolean literal or a pointer to an environment variable that is set to a boolean value.

  • The QueuedRunCoordinator daemon is now more resilient to errors while dequeuing runs. Previously runs which could not launch would block the queue. They will now be marked as failed and removed from the queue.

  • When deploying your own gRPC server for your pipelines, you can now specify that connecting to that server should use a secure SSL connection. For example, the following workspace.yaml file specifies that a secure connection should be used:

    load_from:
      - grpc_server:
          host: localhost
          port: 4266
          location_name: "my_grpc_server"
          ssl: true
    
  • The dagster-daemon process uses fewer resources and spins up fewer subprocesses to load pipeline information. Previously, the scheduler, sensor, and run queue daemon each spun up their own process for this–now they share a single process.

Integrations

  • [Helm] - All images used in our Helm chart are now fully qualified, including a registry name. If you are encountering rate limits when attempting to pull images from DockerHub, you can now edit the Helm chart to pull from a registry of your choice.
  • [Helm] - We now officially use Helm 3 to manage our Dagster Helm chart.
  • [ECR] - We are now publishing the dagster-k8s, dagster-celery-k8s, user-code-example, and k8s-dagit-example images to a public ECR registry in addition to DockerHub. If you are encountering rate limits when attempting to pull images from DockerHub, you should now be able to pull these images from public.ecr.aws/dagster.
  • [dagster-spark] - The dagster-spark config schemas now support loading values for all fields via environment variables.

Bugfixes

  • Fixed a bug in the helm chart that would cause a Redis Kubernetes pod to be created even when an external Redis is configured. Now, the Redis Kubernetes pod is only created when redis.internal is set to True in helm chart.
  • Fixed an issue where the dagster-daemon process sometimes left dangling subprocesses running during sensor execution, causing excess resource usage.
  • Fixed an issue where Dagster sometimes left hanging threads running after pipeline execution.
  • Fixed an issue where the sensor daemon would mistakenly mark itself as in an unhealthy state even after recovering from an error.
  • Tags applied to solid invocations using the tag method on solid invocations (as opposed to solid definitions) are now correctly propagated during execution. They were previously being ignored.

Experimental

  • MySQL (via dagster-mysql) is now supported as a backend for event log, run, & schedule storages. Add the following to your dagster.yaml to use MySQL for storage:

    run_storage:
      module: dagster_mysql.run_storage
      class: MySQLRunStorage
      config:
        mysql_db:
          username: { username }
          password: { password }
          hostname: { hostname }
          db_name: { database }
          port: { port }
    
    event_log_storage:
      module: dagster_mysql.event_log
      class: MySQLEventLogStorage
      config:
        mysql_db:
          username: { username }
          password: { password }
          hostname: { hostname }
          db_name: { db_name }
          port: { port }
    
    schedule_storage:
      module: dagster_mysql.schedule_storage
      class: MySQLScheduleStorage
      config:
        mysql_db:
          username: { username }
          password: { password }
          hostname: { hostname }
          db_name: { db_name }
          port: { port }
    

0.10.7#

New

  • When user code raises an error inside handle_output, load_input, or a type check function, the log output now includes context about which input or output the error occurred during.
  • Added a secondary index to improve performance when querying run status. Run dagster instance migrate to upgrade.
  • [Helm] Celery queues can now be configured with different node selectors. Previously, configuring a node selector applied it to all Celery queues.
  • In Dagit, a repository location reload button is now available in the header of every pipeline, schedule, and sensor page.
  • When viewing a run in Dagit, log filtering behavior has been improved. step and type filtering now offer fuzzy search, all log event types are now searchable, and visual bugs within the input have been repaired. Additionally, the default setting for “Hide non-matches” has been flipped to true.
  • After launching a backfill in Dagit, the success message now includes a link to view the runs for the backfill.
  • The dagster-daemon process now runs faster when running multiple schedulers or sensors from the same repository.
  • When launching a backfill from Dagit, the “Re-execute From Last Run” option has been removed, because it had confusing semantics. “Re-execute From Failure” now includes a tooltip.
  • fs_io_manager now defaults the base directory to base_dir via the Dagster instance’s local_artifact_storage configuration. Previously, it defaults to the directory where the pipeline is executed.
  • Experimental IO managers versioned_filesystem_io_manager and custom_path_fs_io_manager now require base_dir as part of the resource configs. Previously, the base_dir defaulted to the directory where the pipeline was executed.
  • Added a backfill daemon that submits backfill runs in a daemon process. This should relieve memory / CPU requirements for scheduling large backfill jobs. Enabling this feature requires a schema migration to the runs storage via the CLI command dagster instance migrate and configuring your instance with the following settings in dagster.yaml:
  • backfill: daemon_enabled: true

There is a corresponding flag in the Dagster helm chart to enable this instance configuration. See the Helm chart’s values.yaml file for more information.

  • Both sensors and schedule definitions support a description parameter that takes in a human-readable string description and displays it on the corresponding landing page in Dagit.

Integrations

  • [dagster-gcp] The gcs_pickle_io_manager now also retries on 403 Forbidden errors, which previously would only retry on 429 TooManyRequests.

Bug Fixes

  • The use of Tuple with nested inner types in solid definitions no longer causes GraphQL errors
  • When searching assets in Dagit, keyboard navigation to the highlighted suggestion now navigates to the correct asset.
  • In some cases, run status strings in Dagit (e.g. “Queued”, “Running”, “Failed”) did not accurately match the status of the run. This has been repaired.
  • The experimental CLI command dagster new-repo should now properly generate subdirectories and files, without needing to install dagster from source (e.g. with pip install --editable).
  • Sensor minimum intervals now interact in a more compatible way with sensor daemon intervals to minimize evaluation ticks getting skipped. This should result in the cadence of sensor evaluations being less choppy.

Dependencies

  • Removed Dagster’s pin of the pendulum datetime/timezone library.

Documentation

  • Added an example of how to write a user-in-the-loop pipeline

0.10.6#

New

  • Added a dagster run delete CLI command to delete a run and its associated event log entries.
  • Added a partition_days_offset argument to the @daily_schedule decorator that allows you to customize which partition is used for each execution of your schedule. The default value of this parameter is 1, which means that a schedule that runs on day N will fill in the partition for day N-1. To create a schedule that uses the partition for the current day, set this parameter to 0, or increase it to make the schedule use an earlier day’s partition. Similar arguments have also been added for the other partitioned schedule decorators (@monthly_schedule, @weekly_schedule, and @hourly_schedule).
  • The experimental dagster new-repo command now includes a workspace.yaml file for your new repository.
  • When specifying the location of a gRPC server in your workspace.yaml file to load your pipelines, you can now specify an environment variable for the server’s hostname and port. For example, this is now a valid workspace:
load_from:
  - grpc_server:
      host:
        env: FOO_HOST
      port:
        env: FOO_PORT

Integrations

  • [Kubernetes] K8sRunLauncher and CeleryK8sRunLauncher no longer reload the pipeline being executed just before launching it. The previous behavior ensured that the latest version of the pipeline was always being used, but was inconsistent with other run launchers. Instead, to ensure that you’re running the latest version of your pipeline, you can refresh your repository in Dagit by pressing the button next to the repository name.
  • [Kubernetes] Added a flag to the Dagster helm chart that lets you specify that the cluster already has a redis server available, so the Helm chart does not need to create one in order to use redis as a messaging queue. For more information, see the Helm chart’s values.yaml file.

Bug Fixes

  • Schedules with invalid cron strings will now throw an error when the schedule definition is loaded, instead of when the cron string is evaluated.
  • Starting in the 0.10.1 release, the Dagit playground did not load when launched with the --path-prefix option. This has been fixed.
  • In the Dagit playground, when loading the run preview results in a Python error, the link to view the error is now clickable.
  • When using the “Refresh config” button in the Dagit playground after reloading a pipeline’s repository, the user’s solid selection is now preserved.
  • When executing a pipeline with a ModeDefinition that contains a single executor, that executor is now selected by default.
  • Calling reconstructable on pipelines with that were also decorated with hooks no longer raises an error.
  • The dagster-daemon liveness-check command previously returned false when daemons surfaced non-fatal errors to be displayed in Dagit, leading to crash loops in Kubernetes. The command has been fixed to return false only when the daemon has stopped running.
  • When a pipeline definition includes OutputDefinitions with io_manager_keys, or InputDefinitions with root_manager_keys, but any of the modes provided for the pipeline definition do not include a resource definition for the required key, Dagster now raises an error immediately instead of when the pipeline is executed.
  • dbt 0.19.0 introduced breaking changes to the JSON schema of dbt Artifacts. dagster-dbt has been updated to handle the new run_results.json schema for dbt 0.19.0.

Dependencies

  • The astroid library has been pinned to version 2.4 in dagster, due to version 2.5 causing problems with our pylint test suite.

Documentation

0.10.5#

Community Contributions

  • Add /License for packages that claim distribution under Apache-2.0 (thanks @bollwyvl!)

New

  • [k8s] Changed our weekly docker image releases (the default images in the helm chart). dagster/dagster-k8s and dagster/dagster-celery-k8s can be used for all processes which don't require user code (Dagit, Daemon, and Celery workers when using the CeleryK8sExecutor). user-code-example can be used for a sample user repository. The prior images (k8s-dagit, k8s-celery-worker, k8s-example) are deprecated.
  • configured api on solids now enforces name argument as positional. The name argument remains a keyword argument on executors. name argument has been removed from resources, and loggers to reflect that they are anonymous. Previously, you would receive an error message if the name argument was provided to configured on resources or loggers.
  • [sensors] In addition to the per-sensor minimum_interval_seconds field, the overall sensor daemon interval can now be configured in the dagster.yaml instance settings with:
sensor_settings:
  interval_seconds: 30 # (default)

This changes the interval at which the daemon checks for sensors which haven't run within their minimum_interval_seconds.

  • The message logged for type check failures now includes the description included in the TypeCheck
  • The dagster-daemon process now runs each of its daemons in its own thread. This allows the scheduler, sensor loop, and daemon for launching queued runs to run in parallel, without slowing each other down. The dagster-daemon process will shut down if any of the daemon threads crash or hang, so that the execution environment knows that it needs to be restarted.
  • dagster new-repo is a new CLI command that generates a Dagster repository with skeleton code in your filesystem. This CLI command is experimental and it may generate different files in future versions, even between dot releases. As of 0.10.5, dagster new-repo does not support Windows. See here for official API docs.
  • When using a grpc_server repository location, Dagit will automatically detect changes and prompt you to reload when the remote server updates.
  • Improved consistency of headers across pages in Dagit.
  • Added support for assets to the default SQLite event log storage.

Integrations

  • [dagster-pandas] - Improved the error messages on failed pandas type checks.
  • [dagster-postgres] - postgres_url is now a StringSource and can be loaded by environment variable
  • [helm] - Users can set Kubernetes labels on Celery worker deployments
  • [helm] - Users can set environment variables for Flower deployment
  • [helm] - The redis helm chart is now included as an optional dagster helm chart dependency

Bugfixes

  • Resolved an error preventing dynamic outputs from being passed to composite_solid inputs
  • Fixed the tick history graph for schedules defined in a lazy-loaded repository (#3626)
  • Fixed performance regression of the Runs page on dagit.
  • Fixed Gantt chart on Dagit run view to use the correct start time, repairing how steps are rendered within the chart.
  • On Instance status page in Dagit, correctly handle states where daemons have multiple errors.
  • Various Dagit bugfixes and improvements.

0.10.4#

Bugfixes

  • Fixed an issue with daemon heartbeat backwards compatibility. Resolves an error on Dagit's Daemon Status page

0.10.3#

New

  • [dagster] Sensors can now specify a minimum_interval_seconds argument, which determines the minimum amount of time between sensor evaluations.
  • [dagit] After manually reloading the current repository, users will now be prompted to regenerate preset-based or partition-set based run configs in the Playground view. This helps ensure that the generated run config is up to date when launching new runs. The prompt does not occur when the repository is automatically reloaded.

Bugfixes

  • Updated the -n/--max_workers default value for the dagster api grpc command to be None. When set to None, the gRPC server will use the default number of workers which is based on the CPU count. If you were previously setting this value to 1, we recommend removing the argument or increasing the number.
  • Fixed issue loading the schedule tick history graph for new schedules that have not been turned on.
  • In Dagit, newly launched runs will open in the current tab instead of a new tab.
  • Dagit bugfixes and improvements, including changes to loading state spinners.
  • When a user specifies both an intermediate storage and an IO manager for a particular output, we no longer silently ignore the IO manager

0.10.2#

Community Contributions

New

  • [dagstermill] Users can now specify custom tags & descriptions for notebook solids.
  • [dagster-pagerduty / dagster-slack] Added built-in hook integrations to create pagerduty/slack alerts when solids fail.
  • [dagit] Added ability to preview runs for upcoming schedule ticks.

Bugfixes

  • Fixed an issue where run start times and end times were displayed in the wrong timezone in Dagit when using Postgres storage.

  • Schedules with partitions that weren’t able to execute due to not being able to find a partition will now display the name of the partition they were unable to find on the “Last tick” entry for that schedule.

  • Improved timing information display for queued and canceled runs within the Runs table view and on individual Run pages in Dagit.

  • Improvements to the tick history view for schedules and sensors.

  • Fixed formatting issues on the Dagit instance configuration page.

  • Miscellaneous Dagit bugfixes and improvements.

  • The dagster pipeline launch command will now respect run concurrency limits if they are applied on your instance.

  • Fixed an issue where re-executing a run created by a sensor would cause the daemon to stop executing any additional runs from that sensor.

  • Sensor runs with invalid run configuration will no longer create a failed run - instead, an error will appear on the page for the sensor, allowing you to fix the configuration issue.

  • General dagstermill housekeeping: test refactoring & type annotations, as well as repinning ipykernel to solve #3401

Documentation

  • Improved dagster-dbt example.
  • Added examples to demonstrate experimental features, including Memoized Development and Dynamic Graph.
  • Added a PR template and how to pick an issue for the first time contributors

0.10.1#

Community Contributions

  • Reduced image size of k8s-example by 25% (104 MB) (thanks @alex-treebeard and @mrdavidlaing!)
  • [dagster-snowflake] snowflake_resource can now be configured to use the SQLAlchemy connector (thanks @basilvetas!)

New

  • When setting userDeployments.deployments in the Helm chart, replicaCount now defaults to 1 if not specified.

Bugfixes

  • Fixed an issue where the Dagster daemon process couldn’t launch runs in repository locations containing more than one repository.
  • Fixed an issue where Helm chart was not correctly templating env, envConfigMaps, and envSecrets.

Documentation

  • Added new troubleshooting guide for problems encountered while using the QueuedRunCoordinator to limit run concurrency.
  • Added documentation for the sensor command-line interface.

0.10.0 "The Edge of Glory"#

Major Changes#

  • A native scheduler with support for exactly-once, fault tolerant, timezone-aware scheduling. A new Dagster daemon process has been added to manage your schedules and sensors with a reconciliation loop, ensuring that all runs are executed exactly once, even if the Dagster daemon experiences occasional failure. See the Migration Guide for instructions on moving from SystemCronScheduler or K8sScheduler to the new scheduler.
  • First-class sensors, built on the new Dagster daemon, allow you to instigate runs based on changes in external state - for example, files on S3 or assets materialized by other Dagster pipelines. See the Sensors Overview for more information.
  • Dagster now supports pipeline run queueing. You can apply instance-level run concurrency limits and prioritization rules by adding the QueuedRunCoordinator to your Dagster instance. See the Run Concurrency Overview for more information.
  • The IOManager abstraction provides a new, streamlined primitive for granular control over where and how solid outputs are stored and loaded. This is intended to replace the (deprecated) intermediate/system storage abstractions, See the IO Manager Overview for more information.
  • A new Partitions page in Dagit lets you view your your pipeline runs organized by partition. You can also launch backfills from Dagit and monitor them from this page.
  • A new Instance Status page in Dagit lets you monitor the health of your Dagster instance, with repository location information, daemon statuses, instance-level schedule and sensor information, and linkable instance configuration.
  • Resources can now declare their dependencies on other resources via the required_resource_keys parameter on @resource.
  • Our support for deploying on Kubernetes is now mature and battle-tested Our Helm chart is now easier to configure and deploy, and we’ve made big investments in observability and reliability. You can view Kubernetes interactions in the structured event log and use Dagit to help you understand what’s happening in your deployment. The defaults in the Helm chart will give you graceful degradation and failure recovery right out of the box.
  • Experimental support for dynamic orchestration with the new DynamicOutputDefinition API. Dagster can now map the downstream dependencies over a dynamic output at runtime.

Breaking Changes#

Dropping Python 2 support

  • We’ve dropped support for Python 2.7, based on community usage and enthusiasm for Python 3-native public APIs.

Removal of deprecated APIs

These APIs were marked for deprecation with warnings in the 0.9.0 release, and have been removed in the 0.10.0 release.

  • The decorator input_hydration_config has been removed. Use the dagster_type_loader decorator instead.
  • The decorator output_materialization_config has been removed. Use dagster_type_materializer instead.
  • The system storage subsystem has been removed. This includes SystemStorageDefinition, @system_storage, and default_system_storage_defs . Use the new IOManagers API instead. See the IO Manager Overview for more information.
  • The config_field argument on decorators and definitions classes has been removed and replaced with config_schema. This is a drop-in rename.
  • The argument step_keys_to_execute to the functions reexecute_pipeline and reexecute_pipeline_iterator has been removed. Use the step_selection argument to select subsets for execution instead.
  • Repositories can no longer be loaded using the legacy repository key in your workspace.yaml; use load_from instead. See the Workspaces Overview for documentation about how to define a workspace.

Breaking API Changes

  • SolidExecutionResult.compute_output_event_dict has been renamed to SolidExecutionResult.compute_output_events_dict. A solid execution result is returned from methods such as result_for_solid. Any call sites will need to be updated.
  • The .compute suffix is no longer applied to step keys. Step keys that were previously named my_solid.compute will now be named my_solid. If you are using any API method that takes a step_selection argument, you will need to update the step keys accordingly.
  • The pipeline_def property has been removed from the InitResourceContext passed to functions decorated with @resource.

Dagstermill

  • If you are using define_dagstermill_solid with the output_notebook parameter set to True, you will now need to provide a file manager resource (subclass of dagster.core.storage.FileManager) on your pipeline mode under the resource key "file_manager", e.g.:

    from dagster import ModeDefinition, local_file_manager, pipeline
    from dagstermill import define_dagstermill_solid
    
    my_dagstermill_solid = define_dagstermill_solid("my_dagstermill_solid", output_notebook=True, ...)
    
    @pipeline(mode_defs=[ModeDefinition(resource_defs={"file_manager": local_file_manager})])
    def my_dagstermill_pipeline():
        my_dagstermill_solid(...)
    

Helm Chart

  • The schema for the scheduler values in the helm chart has changed. Instead of a simple toggle on/off, we now require an explicit scheduler.type to specify usage of the DagsterDaemonScheduler, K8sScheduler, or otherwise. If your specified scheduler.type has required config, these fields must be specified under scheduler.config.
  • snake_case fields have been changed to camelCase. Please update your values.yaml as follows:
    • pipeline_runpipelineRun
    • dagster_homedagsterHome
    • env_secretsenvSecrets
    • env_config_mapsenvConfigMaps
  • The Helm values celery and k8sRunLauncher have now been consolidated under the Helm value runLauncher for simplicity. Use the field runLauncher.type to specify usage of the K8sRunLauncher, CeleryK8sRunLauncher, or otherwise. By default, the K8sRunLauncher is enabled.
  • All Celery message brokers (i.e. RabbitMQ and Redis) are disabled by default. If you are using the CeleryK8sRunLauncher, you should explicitly enable your message broker of choice.
  • userDeployments are now enabled by default.

Core#

  • Event log messages streamed to stdout and stderr have been streamlined to be a single line per event.

  • Experimental support for memoization and versioning lets you execute pipelines incrementally, selecting which solids need to be rerun based on runtime criteria and versioning their outputs with configurable identifiers that capture their upstream dependencies.

    To set up memoized step selection, users can provide a MemoizableIOManager, whose has_output function decides whether a given solid output needs to be computed or already exists. To execute a pipeline with memoized step selection, users can supply the dagster/is_memoized_run run tag to execute_pipeline.

    To set the version on a solid or resource, users can supply the version field on the definition. To access the derived version for a step output, users can access the version field on the OutputContext passed to the handle_output and load_input methods of IOManager and the has_output method of MemoizableIOManager.

  • Schedules that are executed using the new DagsterDaemonScheduler can now execute in any timezone by adding an execution_timezone parameter to the schedule. Daylight Savings Time transitions are also supported. See the Schedules Overview for more information and examples.

Dagit#

  • Countdown and refresh buttons have been added for pages with regular polling queries (e.g. Runs, Schedules).
  • Confirmation and progress dialogs are now presented when performing run terminations and deletions. Additionally, hanging/orphaned runs can now be forced to terminate, by selecting "Force termination immediately" in the run termination dialog.
  • The Runs page now shows counts for "Queued" and "In progress" tabs, and individual run pages show timing, tags, and configuration metadata.
  • The backfill experience has been improved with means to view progress and terminate the entire backfill via the partition set page. Additionally, errors related to backfills are now surfaced more clearly.
  • Shortcut hints are no longer displayed when attempting to use the screen capture command.
  • The asset page has been revamped to include a table of events and enable organizing events by partition. Asset key escaping issues in other views have been fixed as well.
  • Miscellaneous bug fixes, frontend performance tweaks, and other improvements are also included.

Kubernetes/Helm#

Helm

  • We've added schema validation to our Helm chart. You can now check that your values YAML file is correct by running:

    helm lint helm/dagster -f helm/dagster/values.yaml
    
  • Added support for resource annotations throughout our Helm chart.

  • Added Helm deployment of the dagster daemon & daemon scheduler.

  • Added Helm support for configuring a compute log manager in your dagster instance.

  • User code deployments now include a user ConfigMap by default.

  • Changed the default liveness probe for Dagit to use httpGet "/dagit_info" instead of tcpSocket:80

Dagster-K8s [Kubernetes]

  • Added support for user code deployments on Kubernetes.
  • Added support for tagging pipeline executions.
  • Fixes to support version 12.0.0 of the Python Kubernetes client.
  • Improved implementation of Kubernetes+Dagster retries.
  • Many logging improvements to surface debugging information and failures in the structured event log.

Dagster-Celery-K8s

  • Improved interrupt/termination handling in Celery workers.

Integrations & Libraries#

  • Added a new dagster-docker library with a DockerRunLauncher that launches each run in its own Docker container. (See Deploying with Docker docs for an example.)
  • Added support for AWS Athena. (Thanks @jmsanders!)
  • Added mocks for AWS S3, Athena, and Cloudwatch in tests. (Thanks @jmsanders!)
  • Allow setting of S3 endpoint through env variables. (Thanks @marksteve!)
  • Various bug fixes and new features for the Azure, Databricks, and Dask integrations.
  • Added a create_databricks_job_solid for creating solids that launch Databricks jobs.

0.9.22.post0#

Bugfixes

  • [Dask] Pin dask[dataframe] to <=2.30.0 and distributed to <=2.30.1

0.9.22#

New

  • When using a solid selection in the Dagit Playground, non-matching solids are hidden in the RunPreview panel.
  • The CLI command dagster pipeline launch now accepts --run-id

Bugfixes

  • [Helm/K8s] Fixed whitespacing bug in ingress.yaml Helm template.

0.9.21#

Community Contributions

  • Fixed helm chart to only add flower to the K8s ingress when enabled (thanks @PenguinToast!)
  • Updated helm chart to use more lenient timeouts for liveness probes on user code deployments (thanks @PenguinToast!)

Bugfixes

  • [Helm/K8s] Due to Flower being incompatible with Celery 5.0, the Helm chart for Dagster now uses a specific image mher/flower:0.9.5 for the Flower pod.

0.9.20#

New

  • [Dagit] Show recent runs on individual schedule pages
  • [Dagit] It’s no longer required to run dagster schedule up or press the Reconcile button before turning on a new schedule for the first time
  • [Dagit] Various improvements to the asset view. Expanded the Last Materialization Event view. Expansions to the materializations over time view, allowing for both a list view and a graphical view of materialization data.

Community Contributions

  • Updated many dagster-aws tests to use mocked resources instead of depending on real cloud resources, making it possible to run these tests locally. (thanks @jmsanders!)

Bugfixes

  • fixed an issue with retries in step launchers
  • [Dagit] bugfixes and improvements
  • Fixed an issue where dagit sometimes left hanging processes behind after exiting

Experimental

  • [K8s] The dagster daemon is now optionally deployed by the helm chart. This enables run-level queuing with the QueuedRunCoordinator.

0.9.19#

New

  • Improved error handling when the intermediate storage stores and retrieves objects.
  • New URL scheme in Dagit, with repository details included on all paths for pipelines, solids, and schedules
  • Relaxed constraints for the AssetKey constructor, to enable arbitrary strings as part of the key path.
  • When executing a subset of a pipeline, configuration that does not apply to the current subset but would be valid in the original pipeline is now allowed and ignored.
  • GCSComputeLogManager was added, allowing for compute logs to be persisted to Google cloud storage
  • The step-partition matrix in Dagit now auto-reloads runs

Bugfixes

  • Dagit bugfixes and improvements
  • When specifying a namespace during helm install, the same namespace will now be used by the K8sScheduler or K8sRunLauncher, unless overridden.
  • @pipeline decorated functions with -> None typing no longer cause unexpected problems.
  • Fixed an issue where compute logs might not always be complete on Windows.

0.9.18#

Breaking Changes

  • CliApiRunLauncher and GrpcRunLauncher have been combined into DefaultRunLauncher. If you had one of these run launchers in your dagster.yaml, replace it with DefaultRunLauncher or remove the run_launcher: section entirely.

New

  • Added a type loader for typed dictionaries: can now load typed dictionaries from config.

Bugfixes

  • Dagit bugfixes and improvements
    • Added error handling for repository errors on startup and reload
    • Repaired timezone offsets
    • Fixed pipeline explorer state for empty pipelines
    • Fixed Scheduler table
  • User-defined k8s config in the pipeline run tags (with key dagster-k8s/config) will now be passed to the k8s jobs when using the dagster-k8s and dagster-celery-k8s run launchers. Previously, only user-defined k8s config in the pipeline definition’s tag was passed down.

Experimental

  • Run queuing: the new QueuedRunCoordinator enables limiting the number of concurrent runs. The DefaultRunCoordinator launches jobs directly from Dagit, preserving existing behavior.

0.9.17#

New

  • [dagster-dask] Allow connecting to an existing scheduler via its address
  • [dagster-aws] Importing dagster_aws.emr no longer transitively importing dagster_spark
  • [dagster-dbr] CLI solids now emit materializations

Community contributions

  • Docs fix (Thanks @kaplanbora!)

Bug fixes

  • PipelineDefinition 's that do not meet resource requirements for its types will now fail at definition time
  • Dagit bugfixes and improvements
  • Fixed an issue where a run could be left hanging if there was a failure during launch

Deprecated

  • We now warn if you return anything from a function decorated with @pipeline. This return value actually had no impact at all and was ignored, but we are making changes that will use that value in the future. By changing your code to not return anything now you will avoid any breaking changes with zero user-visible impact.

0.9.16#

Breaking Changes

  • Removed DagsterKubernetesPodOperator in dagster-airflow.
  • Removed the execute_plan mutation from dagster-graphql.
  • ModeDefinition, PartitionSetDefinition, PresetDefinition, @repository, @pipeline, and ScheduleDefinition names must pass the regular expression r"^[A-Za-z0-9_]+$" and not be python keywords or disallowed names. See DISALLOWED_NAMES in dagster.core.definitions.utils for exhaustive list of illegal names.
  • dagster-slack is now upgraded to use slackclient 2.x - this means that this resource will only support Python 3.6 and above.
  • [K8s] Added a health check to the helm chart for user deployments, which relies on a new dagster api grpc-health-check cli command present in Dagster 0.9.16 and later.

New

  • Add helm chart configurations to allow users to configure a K8sRunLauncher, in place of the CeleryK8sRunLauncher.
  • “Copy URL” button to preserve filter state on Run page in dagit

Community Contributions

  • Dagster CLI options can now be passed in via environment variables (Thanks @xinbinhuang!)
  • New --limit flag on the dagster run list command (Thanks @haydarai!)

Bugfixes

  • Addressed performance issues loading the /assets table in dagit. Requires a data migration to create a secondary index by running dagster instance reindex.
  • Dagit bugfixes and improvements

0.9.15#

Breaking Changes

  • CeleryDockerExecutor no longer requires a repo_location_name config field.
  • executeRunInProcess was removed from dagster-graphql.

New

  • Dagit: Warn on tab removal in playground
  • Display versions CLI: Added a new CLI that displays version information for a memoized run. Called via dagster pipeline list_versions.
  • CeleryDockerExecutor accepts a network field to configure the network settings for the Docker container it connects to for execution.
  • Dagit will now set a statement timeout on supported instance DBs. Defaults to 5s and can be controlled with the --db-statement-timeout flag

Community Contributions

  • dagster grpc requirements are now more friendly for users (thanks @jmo-qap!)
  • dagster.utils now has is_str (thanks @monicayao!)
  • dagster-pandas can now load dataframes from pickle (thanks @mrdrprofuroboros!)
  • dagster-ge validation solid factory now accepts name (thanks @haydarai!)

Bugfixes

  • Dagit bugfixes and improvements
  • Fixed an issue where dagster could fail to load large pipelines.
  • Fixed a bug where experimental arg warning would be thrown even when not using versioned dagster type loaders.
  • Fixed a bug where CeleryDockerExecutor was failing to execute pipelines unless they used a legacy workspace config.
  • Fixed a bug where pipeline runs using IntMetadataEntryData could not be visualized in dagit.

Experimental

  • Improve the output structure of dagster-dbt solids.
  • Version-based memoization over outputs stored in the intermediate store now works

Documentation

  • Fix a code snippet rendering issue in Overview: Assets & Materializations
  • Fixed all python code snippets alignment across docs examples

0.9.14#

New

  • Steps down stream of a failed step no longer report skip events and instead simply do not execute.
  • dagit-debug can load multiple debug files.
  • dagit now has a Debug Console Logging feature flag accessible at /flags .
  • Telemetry metrics are now taken when scheduled jobs are executed.
  • With memoized reexecution, we now only copy outputs that current plan won't generate
  • Document titles throughout dagit

Community Contributions

  • [dagster-ge] solid factory can now handle arbitrary types (thanks @sd2k!)
  • [dagster-dask] utility options are now available in loader/materializer for Dask DataFrame (thanks @kinghuang!)

Bugfixes

  • Fixed an issue where run termination would sometimes be ignored or leave the execution process hanging
  • [dagster-k8s] fixed issue that would cause timeouts on clusters with many jobs
  • Fixed an issue where reconstructable was unusable in an interactive environment, even when the pipeline is defined in a different module.
  • Bugfixes and UX improvements in dagit

Experimental

  • AssetMaterializations now have an optional “partition” attribute

0.9.13#

Bugfixes

  • Fixes an issue using build_reconstructable_pipeline.
  • Improved loading times for the asset catalog in Dagit.

Documentations

  • Improved error messages when invoking dagit from the CLI with bad arguments.

0.9.12#

Breaking Changes

  • Dagster now warns when a solid, pipeline, or other definition is created with an invalid name (for example, a Python keyword). This warning will become an error in the 0.9.13 release.

Community Contributions

  • Added an int type to EventMetadataEntry (Thanks @ChocoletMousse!)
  • Added a build_composite_solid_definition method to Lakehouse (Thanks @sd2k!)
  • Improved broken link detection in Dagster docs (Thanks @keyz!)

New

  • Improvements to log filtering on Run view in Dagit
  • Improvements to instance level scheduler page
  • Log engine events when pipeline termination is initiated

Bugfixes

  • Syntax errors in user code now display the file and line number with the error in Dagit
  • Dask executor no longer fails when using intermediate_storage
  • In the Celery K8s executor, we now mark the step as failed when the step job fails
  • Changed the DagsterInvalidAssetKey error so that it no longer fails upon being thrown

Documentation

  • Added API docs for dagster-dbt experimental library
  • Fixed some cosmetic issues with docs.dagster.io
  • Added code snippets from Solids examples to test path, and fixed some inconsistencies regarding parameter ordering
  • Changed to using markers instead of exact line numbers to mark out code snippets

0.9.10#

Breaking Changes

  • [dagster-dask] Removed the compute option from Dask DataFrame materialization configs for all output types. Setting this option to False (default True) would result in a future that is never computed, leading to missing materializations

Community Contributions

New

  • Console log messages are now streamlined to live on a single line per message
  • Added better messaging around $DAGSTER_HOME if it is not set or improperly setup when starting up a Dagster instance
  • Tools for exporting a file for debugging a run have been added:
    • dagster debug export - a new CLI entry added for exporting a run by id to a file
    • dagit-debug - a new CLI added for loading dagit with a run to debug
    • dagit now has a button to download the debug file for a run via the action menu on the runs page
  • The dagster api grpc command now defaults to the current working directory if none is specified
  • Added retries to dagster-postgres connections
  • Fixed faulty warning message when invoking the same solid multiple times in the same context
  • Added ability to specify custom liveness probe for celery workers in kubernetes deployment

Bugfixes

  • Fixed a bug where Dagster types like List/Set/Tuple/Dict/Optional were not displaying properly on dagit logs
  • Fixed endless spinners on dagit --empty-workspace
  • Fixed incorrect snapshot banner on pipeline view
  • Fixed visual overlapping of overflowing dagit logs
  • Fixed a bug where hanging runs when executing against a gRPC server could cause the Runs page to be unable to load
  • Fixed a bug in celery integration where celery tasks could return None when an iterable is expected, causing errors in the celery execution loop.

Experimental

  • [lakehouse] Each time a Lakehouse solid updates an asset, it automatically generates an AssetMaterialization event
  • [lakehouse] Lakehouse computed_assets now accept a version argument that describes the version of the computation
  • Setting the “dagster/is_memoized_run” tag to true will cause the run to skip any steps whose versions match the versions of outputs produced in prior runs.
  • [dagster-dbt] Solids for running dbt CLI commands
  • Added extensive documentation to illuminate how versions are computed
  • Added versions for step inputs from config, default values, and from other step outputs

0.9.9#

New

  • [Databricks] solids created with create_databricks_job_solid now log a URL for accessing the job in the Databricks UI.
  • The pipeline execute command now defaults to using your current directory if you don’t specify a working directory.

Bugfixes

  • [Celery-K8s] Surface errors to Dagit that previously were not caught in the Celery workers.
  • Fix issues with calling add_run_tags on tags that already exist.
  • Add “Unknown” step state in Dagit’s pipeline run logs view for when pipeline has completed but step has not emitted a completion event

Experimental

  • Version tags for resources and external inputs.

Documentation

  • Fix rendering of example solid config in “Basics of Solids” tutorial.

0.9.8#

New

  • Support for the Dagster step selection DSL: reexecute_pipeline now takes step_selection, which accepts queries like *solid_a.compute++ (i.e., solid_a.compute, all of its ancestors, its immediate descendants, and their immediate descendants). steps_to_execute is deprecated and will be removed in 0.10.0.

Community contributions

  • [dagster-databricks] Improved setup of Databricks environment (Thanks @sd2k!)
  • Enabled frozenlist pickling (Thanks @kinghuang!)

Bugfixes

  • Fixed a bug that pipeline-level hooks were not correctly applied on a pipeline subset.
  • Improved error messages when execute command can't load a code pointer.
  • Fixed a bug that prevented serializing Spark intermediates with configured intermediate storages.

Dagit

  • Enabled subset reexecution via Dagit when part of the pipeline is still running.
  • Made Schedules clickable and link to View All page in the schedule section.
  • Various Dagit UI improvements.

Experimental

  • [lakehouse] Added CLI command for building and executing a pipeline that updates a given set of assets: house update --module package.module —assets my_asset*

Documentation

  • Fixes and improvements.

0.9.7#

Bugfixes

  • Fixed an issue in the dagstermill library that caused solid config fetch to be non-deterministic.
  • Fixed an issue in the K8sScheduler where multiple pipeline runs were kicked off for each scheduled execution.

0.9.6#

New

  • Added ADLS2 storage plugin for Spark DataFrame (Thanks @sd2k!)
  • Added feature in the Dagit Playground to automatically remove extra configuration that does not conform to a pipeline’s config schema.
  • [Dagster-Celery/Celery-K8s/Celery-Docker] Added Celery worker names and pods to the logs for each step execution

Community contributions

  • Re-enabled dagster-azure integration tests in dagster-databricks tests (Thanks @sd2k!)
  • Moved dict_without_keys from dagster-pandas into dagster.utils (Thanks @DavidKatz-il)
  • Moved Dask DataFrame read/to options under read/to keys (Thanks @kinghuang)

Bugfixes

  • Fixed helper for importing data from GCS paths into Bigquery (Thanks @grabangomb (https://github.com/grabangomb)!)
  • Postgres event storage now waits to open a thread to watch runs until it is needed

Experimental

  • Added version computation function for DagsterTypeLoader. (Actual versioning will be supported in 0.10.0)
  • Added version attribute to solid and SolidDefinition. (Actual versioning will be supported in 0.10.0)

0.9.5#

New

  • UI improvements to the backfill partition selector
  • Enabled sorting of steps by failure in the partition run matrix in Dagit

Bugfixes

  • [dagstermill] fixes an issue with output notebooks and s3 storage
  • [dagster_celery] bug fixed in pythonpath calculation (thanks @enima2648!)
  • [dagster_pandas] marked create_structured_dataframe_type and ConstraintWithMetadata as experimental APIs
  • [dagster_k8s] reduced default job backoff limit to 0

Docs

  • Various docs site improvements

0.9.4#

Breaking Changes

  • When using the configured API on a solid or composite solid, a new solid name must be provided.
  • The image used by the K8sScheduler to launch scheduled executions is now specified under the “scheduler” section of the Helm chart (previously under “pipeline_run” section).

New

  • Added an experimental mode that speeds up interactions in dagit by launching a gRPC server on startup for each repository location in your workspace. To enable it, add the following to your dagster.yaml:
opt_in:
  local_servers: true
  • Intermediate Storage and System Storage now default to the first provided storage definition when no configuration is provided. Previously, it would be necessary to provide a run config for storage whenever providing custom storage definitions, even if that storage required no run configuration. Now, if the first provided storage definition requires no run configuration, the system will default to using it.
  • Added a timezone picker to Dagit, and made all timestamps timezone-aware
  • Added solid_config to hook context which provides the access to the config schema variable of the corresponding solid.
  • Hooks can be directly set on PipelineDefinition or @pipeline, e.g. @pipeline(hook_defs={hook_a}). It will apply the hooks on every single solid instance within the pipeline.
  • Added Partitions tab for partitioned pipelines, with new backfill selector.

0.9.3#

Breaking Changes

  • Removed deprecated --env flag from CLI
  • The --host CLI param has been renamed to --grpc_host to avoid conflict with the dagit --host param.

New

  • Descriptions for solid inputs and outputs will now be inferred from doc blocks if available (thanks @AndersonReyes !)
  • Various documentation improvements (thanks @jeriscc !)
  • Load inputs from pyspark dataframes (thanks @davidkatz-il !)
  • Added step-level run history for partitioned schedules on the schedule view
  • Added great_expectations integration, through the dagster_ge library. Example usage is under a new example, called ge_example, and documentation for the library can be found under the libraries section of the api docs.
  • PythonObjectDagsterType can now take a tuple of types as well as a single type, more closely mirroring isinstance and allowing Union types to be represented in Dagster.
  • The configured API can now be used on all definition types (including CompositeDefinition). Example usage has been updated in the configuration documentation.
  • Updated Helm chart to include auto-generated user code configmap in user code deployment by default

Bugfixes

  • Databricks now checks intermediate storage instead of system storage
  • Fixes a bug where applying hooks on a pipeline with composite solids would flatten the top-level solids. Now applying hooks on pipelines or composite solids means attaching hooks to every single solid instance within the pipeline or the composite solid.
  • Fixes the GraphQL playground hosted by dagit
  • Fixes a bug where K8s CronJobs were stopped unnecessarily during schedule reconciliation

Experimental

  • New dagster-k8s/config tag that lets users pass in custom configuration to the Kubernetes Job, Job metadata, JobSpec, PodSpec, and PodTemplateSpec metadata.
    • This allows users to specify settings like eviction policy annotations and node affinities.
    • Example:
      @solid(
        tags = {
          'dagster-k8s/config': {
            'container_config': {
              'resources': {
                'requests': { 'cpu': '250m', 'memory': '64Mi' },
                'limits': { 'cpu': '500m', 'memory': '2560Mi' },
              }
            },
            'pod_template_spec_metadata': {
              'annotations': { "cluster-autoscaler.kubernetes.io/safe-to-evict": "true"}
            },
            'pod_spec_config': {
              'affinity': {
                'nodeAffinity': {
                  'requiredDuringSchedulingIgnoredDuringExecution': {
                    'nodeSelectorTerms': [{
                      'matchExpressions': [{
                        'key': 'beta.kubernetes.io/os', 'operator': 'In', 'values': ['windows', 'linux'],
                      }]
                    }]
                  }
                }
              }
            },
          },
        },
      )
      def my_solid(context):
        context.log.info('running')
    

0.9.2#

Breaking Changes

  • The --env flag no longer works for the pipeline launch or pipeline execute commands. Use --config instead.
  • The pipeline execute command no longer accepts the --workspace argument. To execute pipelines in a workspace, use pipeline launch instead.

New

  • Added ResourceDefinition.mock_resource helper for magic mocking resources. Example usage can be found here
  • Remove the row_count metadata entry from the Dask DataFrame type check (thanks @kinghuang!)
  • Add orient to the config options when materializing a Dask DataFrame to json (thanks @kinghuang!)

Bugfixes

  • Fixed a bug where applying configured to a solid definition would overwrite inputs from run config.
  • Fixed a bug where pipeline tags would not apply to solid subsets.
  • Improved error messages for repository-loading errors in CLI commands.
  • Fixed a bug where pipeline execution error messages were not being surfaced in Dagit.

0.9.1#

Bugfixes

  • Fixes an issue in the dagster-k8s-celery executor when executing solid subsets

Breaking Changes

  • Deprecated the IntermediateStore API. IntermediateStorage now wraps an ObjectStore, and TypeStoragePlugin now accepts an IntermediateStorage instance instead of an IntermediateStore instance. (Noe that IntermediateStore and IntermediateStorage are both internal APIs that are used in some non-core libraries).

0.9.0 “Laundry Service”#

Breaking Changes

  • The dagit key is no longer part of the instance configuration schema and must be removed from dagster.yaml files before they can be used.
  • -d can no longer be used as a command-line argument to specify a mode. Use --mode instead.
  • Use --preset instead of --preset-name to specify a preset to the pipeline launch command.
  • We have removed the config argument to the ConfigMapping, @composite_solid, @solid, SolidDefinition, @executor, ExecutorDefinition, @logger, LoggerDefinition, @resource, and ResourceDefinition APIs, which we deprecated in 0.8.0. Use config_schema instead.

New

  • Python 3.8 is now fully supported.
  • -d or --working-directory can be used to specify a working directory in any command that takes in a -f or --python_file argument.
  • Removed the deprecation of create_dagster_pandas_dataframe_type. This is the currently supported API for custom pandas data frame type creation.
  • Removed gevent dependency from dagster
  • New configured API for predefining configuration for various definitions: https://docs.dagster.io/overview/configuration/#configured
  • Added hooks to enable success and failure handling policies on pipelines. This enables users to set up policies on all solids within a pipeline or on a per solid basis. Example usage can be found here
  • New instance level view of Scheduler and running schedules
  • dagster-graphql is now only required in dagit images.

0.8.11#

Breaking Changes

  • AssetMaterializations no longer accepts a dagster_type argument. This reverts the change billed as "AssetMaterializations can now have type information attached as metadata." in the previous release.

0.8.10#

New

  • Added new GCS and Azure file manager resources
  • AssetMaterializations can now have type information attached as metadata. See the materializations tutorial for more
  • Added verification for resource arguments (previously only validated at runtime)

Bugfixes

  • Fixed bug with order-dependent python module resolution seen with some packages (e.g. numpy)
  • Fixed bug where Airflow's context['ts'] was not passed properly
  • Fixed a bug in celery-k8s when using task_acks_late: true that resulted in a 409 Conflict error from Kubernetes. The creation of a Kubernetes Job will now be aborted if another Job with the same name exists
  • Fixed a bug with composite solid output results when solids are skipped
  • Hide the re-execution button in Dagit when the pipeline is not re-executable in the currently loaded repository

Docs

  • Fixed code example in the advanced scheduling doc (Thanks @wingyplus!)
  • Various other improvements

0.8.9#

New

  • CeleryK8sRunLauncher supports termination of pipeline runs. This can be accessed via the “Terminate” button in Dagit’s Pipeline Run view or via “Cancel” in Dagit’s All Runs page. This will terminate the run master K8s Job along with all running step job K8s Jobs; steps that are still in the Celery queue will not create K8s Jobs. The pipeline and all impacted steps will be marked as failed. We recommend implementing resources as context managers and we will execute the finally block upon termination.
  • K8sRunLauncher supports termination of pipeline runs.
  • AssetMaterialization events display the asset key in the Runs view.
  • Added a new "Actions" button in Dagit to allow to cancel or delete mulitple runs.

Bugfixes

  • Fixed an issue where DagsterInstance was leaving database connections open due to not being garbage collected.
  • Fixed an issue with fan-in inputs skipping when upstream solids have skipped.
  • Fixed an issue with getting results from composites with skippable outputs in python API.
  • Fixed an issue where using Enum in resource config schemas resulted in an error.

0.8.8#

New

  • The new configured API makes it easy to create configured versions of resources.
  • Deprecated the Materialization event type in favor of the new AssetMaterialization event type, which requires the asset_key parameter. Solids yielding Materialization events will continue to work as before, though the Materialization event will be removed in a future release.
  • We are starting to deprecate "system storages" - instead of pipelines having a system storage definition which creates an intermediate storage, pipelines now directly have an intermediate storage definition.
    • We have added an intermediate_storage_defs argument to ModeDefinition, which accepts a list of IntermediateStorageDefinitions, e.g. s3_plus_default_intermediate_storage_defs. As before, the default includes an in-memory intermediate and a local filesystem intermediate storage.
    • We have deprecated system_storage_defs argument to ModeDefinition in favor of intermediate_storage_defs. system_storage_defs will be removed in 0.10.0 at the earliest.
    • We have added an @intermediate_storage decorator, which makes it easy to define intermediate storages.
    • We have added s3_file_manager and local_file_manager resources to replace the file managers that previously lived inside system storages. The airline demo has been updated to include an example of how to do this: https://github.com/dagster-io/dagster/blob/0.8.8/examples/airline_demo/airline_demo/solids.py#L171.
  • The help panel in the dagit config editor can now be resized and toggled open or closed, to enable easier editing on smaller screens.

Bugfixes

  • Opening new Dagit browser windows maintains your current repository selection. #2722
  • Pipelines with the same name in different repositories no longer incorrectly share playground state. #2720
  • Setting default_value config on a field now works as expected. #2725
  • Fixed rendering bug in the dagit run reviewer where yet-to-be executed execution steps were rendered on left-hand side instead of the right.

0.8.7#

Breaking Changes

  • Loading python modules reliant on the working directory being on the PYTHONPATH is no longer supported. The dagster and dagit CLI commands no longer add the working directory to the PYTHONPATH when resolving modules, which may break some imports. Explicitly installed python packages can be specified in workspaces using the python_package workspace yaml config option. The python_module config option is deprecated and will be removed in a future release.

New

  • Dagit can be hosted on a sub-path by passing --path-prefix to the dagit CLI. #2073
  • The date_partition_range util function now accepts an optional inclusive boolean argument. By default, the function does not return include the partition for which the end time of the date range is greater than the current time. If inclusive=True, then the list of partitions returned will include the extra partition.
  • MultiDependency or fan-in inputs will now only cause the solid step to skip if all of the fanned-in inputs upstream outputs were skipped

Bugfixes

  • Fixed accidental breaking change with input_hydration_config arguments
  • Fixed an issue with yaml merging (thanks @shasha79!)
  • Invoking alias on a solid output will produce a useful error message (thanks @iKintosh!)
  • Restored missing run pagination controls
  • Fixed error resolving partition-based schedules created via dagster schedule decorators (e.g. daily_schedule) for certain workspace.yaml formats

0.8.6#

Breaking Changes

  • The dagster-celery module has been broken apart to manage dependencies more coherently. There are now three modules: dagster-celery, dagster-celery-k8s, and dagster-celery-docker.
  • Related to above, the dagster-celery worker start command now takes a required -A parameter which must point to the app.py file within the appropriate module. E.g if you are using the celery_k8s_job_executor then you must use the -A dagster_celery_k8s.app option when using the celery or dagster-celery cli tools. Similar for the celery_docker_executor: -A dagster_celery_docker.app must be used.
  • Renamed the input_hydration_config and output_materialization_config decorators to dagster_type_ and dagster_type_materializer respectively. Renamed DagsterType's input_hydration_config and output_materialization_config arguments to loader and materializer respectively.

New

  • New pipeline scoped runs tab in Dagit

  • Add the following Dask Job Queue clusters: moab, sge, lsf, slurm, oar (thanks @DavidKatz-il!)

  • K8s resource-requirements for run coordinator pods can be specified using the dagster-k8s/ resource_requirements tag on pipeline definitions:

    @pipeline(
        tags={
            'dagster-k8s/resource_requirements': {
                'requests': {'cpu': '250m', 'memory': '64Mi'},
                'limits': {'cpu': '500m', 'memory': '2560Mi'},
            }
        },
    )
    def foo_bar_pipeline():
    
  • Added better error messaging in dagit for partition set and schedule configuration errors

  • An initial version of the CeleryDockerExecutor was added (thanks @mrdrprofuroboros!). The celery workers will launch tasks in docker containers.

  • Experimental: Great Expectations integration is currently under development in the new library dagster-ge. Example usage can be found here

0.8.5#

Breaking Changes

  • Python 3.5 is no longer under test.
  • Engine and ExecutorConfig have been deleted in favor of Executor. Instead of the @executor decorator decorating a function that returns an ExecutorConfig it should now decorate a function that returns an Executor.

New

  • The python built-in dict can be used as an alias for Permissive() within a config schema declaration.
  • Use StringSource in the S3ComputeLogManager configuration schema to support using environment variables in the configuration (Thanks @mrdrprofuroboros!)
  • Improve Backfill CLI help text
  • Add options to spark_df_output_schema (Thanks @DavidKatz-il!)
  • Helm: Added support for overriding the PostgreSQL image/version used in the init container checks.
  • Update celery k8s helm chart to include liveness checks for celery workers and flower
  • Support step level retries to celery k8s executor

Bugfixes

  • Improve error message shown when a RepositoryDefinition returns objects that are not one of the allowed definition types (Thanks @sd2k!)
  • Show error message when $DAGSTER_HOME environment variable is not an absolute path (Thanks @AndersonReyes!)
  • Update default value for staging_prefix in the DatabricksPySparkStepLauncher configuration to be an absolute path (Thanks @sd2k!)
  • Improve error message shown when Databricks logs can't be retrieved (Thanks @sd2k!)
  • Fix errors in documentation fo input_hydration_config (Thanks @joeyfreund!)

0.8.4#

Bugfix

  • Reverted changed in 0.8.3 that caused error during run launch in certain circumstances
  • Updated partition graphs on schedule page to select most recent run
  • Forced reload of partitions for partition sets to ensure not serving stale data

New

  • Added reload button to dagit to reload current repository
  • Added option to wipe a single asset key by using dagster asset wipe <asset_key>
  • Simplified schedule page, removing ticks table, adding tags for last tick attempt
  • Better debugging tools for launch errors

0.8.3#

Breaking Changes

  • Previously, the gcs_resource returned a GCSResource wrapper which had a single client property that returned a google.cloud.storage.client.Client. Now, the gcs_resource returns the client directly.

    To update solids that use the gcp_resource, change:

    context.resources.gcs.client
    

    To:

    context.resources.gcs
    

New

  • Introduced a new Python API reexecute_pipeline to reexecute an existing pipeline run.
  • Performance improvements in Pipeline Overview and other pages.
  • Long metadata entries in the asset details view are now scrollable.
  • Added a project field to the gcs_resource in dagster_gcp.
  • Added new CLI command dagster asset wipe to remove all existing asset keys.

Bugfix

  • Several Dagit bugfixes and performance improvements
  • Fixes pipeline execution issue with custom run launchers that call executeRunInProcess.
  • Updates dagster schedule up output to be repository location scoped

0.8.2#

Bugfix

  • Fixes issues with dagster instance migrate.
  • Fixes bug in launch_scheduled_execution that would mask configuration errors.
  • Fixes bug in dagit where schedule related errors were not shown.
  • Fixes JSON-serialization error in dagster-k8s when specifying per-step resources.

New

  • Makes label optional parameter for materializations with asset_key specified.
  • Changes Assets page to have a typeahead selector and hierarchical views based on asset_key path.
  • dagster-ssh
    • adds SFTP get and put functions to SSHResource, replacing sftp_solid.

Docs

  • Various docs corrections

0.8.1#

Bugfix

  • Fixed a file descriptor leak that caused OSError: [Errno 24] Too many open files when enough temporary files were created.
  • Fixed an issue where an empty config in the Playground would unexpectedly be marked as invalid YAML.
  • Removed "config" deprecation warnings for dask and celery executors.

New

  • Improved performance of the Assets page.

0.8.0 "In The Zone"#

Major Changes

Please see the 080_MIGRATION.md migration guide for details on updating existing code to be compatible with 0.8.0

  • Workspace, host and user process separation, and repository definition Dagit and other tools no longer load a single repository containing user definitions such as pipelines into the same process as the framework code. Instead, they load a "workspace" that can contain multiple repositories sourced from a variety of different external locations (e.g., Python modules and Python virtualenvs, with containers and source control repositories soon to come).

    The repositories in a workspace are loaded into their own "user" processes distinct from the "host" framework process. Dagit and other tools now communicate with user code over an IPC mechanism. This architectural change has a couple of advantages:

    • Dagit no longer needs to be restarted when there is an update to user code.
    • Users can use repositories to organize their pipelines, but still work on all of their repositories using a single running Dagit.
    • The Dagit process can now run in a separate Python environment from user code so pipeline dependencies do not need to be installed into the Dagit environment.
    • Each repository can be sourced from a separate Python virtualenv, so teams can manage their dependencies (or even their own Python versions) separately.

    We have introduced a new file format, workspace.yaml, in order to support this new architecture. The workspace yaml encodes what repositories to load and their location, and supersedes the repository.yaml file and associated machinery.

    As a consequence, Dagster internals are now stricter about how pipelines are loaded. If you have written scripts or tests in which a pipeline is defined and then passed across a process boundary (e.g., using the multiprocess_executor or dagstermill), you may now need to wrap the pipeline in the reconstructable utility function for it to be reconstructed across the process boundary.

    In addition, rather than instantiate the RepositoryDefinition class directly, users should now prefer the @repository decorator. As part of this change, the @scheduler and @repository_partitions decorators have been removed, and their functionality subsumed under @repository.

  • Dagit organization The Dagit interface has changed substantially and is now oriented around pipelines. Within the context of each pipeline in an environment, the previous "Pipelines" and "Solids" tabs have been collapsed into the "Definition" tab; a new "Overview" tab provides summary information about the pipeline, its schedules, its assets, and recent runs; the previous "Playground" tab has been moved within the context of an individual pipeline. Related runs (e.g., runs created by re-executing subsets of previous runs) are now grouped together in the Playground for easy reference. Dagit also now includes more advanced support for display of scheduled runs that may not have executed ("schedule ticks"), as well as longitudinal views over scheduled runs, and asset-oriented views of historical pipeline runs.

  • Assets Assets are named materializations that can be generated by your pipeline solids, which support specialized views in Dagit. For example, if we represent a database table with an asset key, we can now index all of the pipelines and pipeline runs that materialize that table, and view them in a single place. To use the asset system, you must enable an asset-aware storage such as Postgres.

  • Run launchers The distinction between "starting" and "launching" a run has been effaced. All pipeline runs instigated through Dagit now make use of the RunLauncher configured on the Dagster instance, if one is configured. Additionally, run launchers can now support termination of previously launched runs. If you have written your own run launcher, you may want to update it to support termination. Note also that as of 0.7.9, the semantics of RunLauncher.launch_run have changed; this method now takes the run_id of an existing run and should no longer attempt to create the run in the instance.

  • Flexible reexecution Pipeline re-execution from Dagit is now fully flexible. You may re-execute arbitrary subsets of a pipeline's execution steps, and the re-execution now appears in the interface as a child run of the original execution.

  • Support for historical runs Snapshots of pipelines and other Dagster objects are now persisted along with pipeline runs, so that historial runs can be loaded for review with the correct execution plans even when pipeline code has changed. This prepares the system to be able to diff pipeline runs and other objects against each other.

  • Step launchers and expanded support for PySpark on EMR and Databricks We've introduced a new StepLauncher abstraction that uses the resource system to allow individual execution steps to be run in separate processes (and thus on separate execution substrates). This has made extensive improvements to our PySpark support possible, including the option to execute individual PySpark steps on EMR using the EmrPySparkStepLauncher and on Databricks using the DatabricksPySparkStepLauncher The emr_pyspark example demonstrates how to use a step launcher.

  • Clearer names What was previously known as the environment dictionary is now called the run_config, and the previous environment_dict argument to APIs such as execute_pipeline is now deprecated. We renamed this argument to focus attention on the configuration of the run being launched or executed, rather than on an ambiguous "environment". We've also renamed the config argument to all use definitions to be config_schema, which should reduce ambiguity between the configuration schema and the value being passed in some particular case. We've also consolidated and improved documentation of the valid types for a config schema.

  • Lakehouse We're pleased to introduce Lakehouse, an experimental, alternative programming model for data applications, built on top of Dagster core. Lakehouse allows developers to define data applications in terms of data assets, such as database tables or ML models, rather than in terms of the computations that produce those assets. The simple_lakehouse example gives a taste of what it's like to program in Lakehouse. We'd love feedback on whether this model is helpful!

  • Airflow ingest We've expanded the tooling available to teams with existing Airflow installations that are interested in incrementally adopting Dagster. Previously, we provided only injection tools that allowed developers to write Dagster pipelines and then compile them into Airflow DAGs for execution. We've now added ingestion tools that allow teams to move to Dagster for execution without having to rewrite all of their legacy pipelines in Dagster. In this approach, Airflow DAGs are kept in their own container/environment, compiled into Dagster pipelines, and run via the Dagster orchestrator. See the airflow_ingest example for details!

Breaking Changes

  • dagster

    • The @scheduler and @repository_partitions decorators have been removed. Instances of ScheduleDefinition and PartitionSetDefinition belonging to a repository should be specified using the @repository decorator instead.

    • Support for the Dagster solid selection DSL, previously introduced in Dagit, is now uniform throughout the Python codebase, with the previous solid_subset arguments (--solid-subset in the CLI) being replaced by solid_selection (--solid-selection). In addition to the names of individual solids, this argument now supports selection queries like *solid_name++ (i.e., solid_name, all of its ancestors, its immediate descendants, and their immediate descendants).

    • The built-in Dagster type Path has been removed.

    • PartitionSetDefinition names, including those defined by a PartitionScheduleDefinition, must now be unique within a single repository.

    • Asset keys are now sanitized for non-alphanumeric characters. All characters besides alphanumerics and _ are treated as path delimiters. Asset keys can also be specified using AssetKey, which accepts a list of strings as an explicit path. If you are running 0.7.10 or later and using assets, you may need to migrate your historical event log data for asset keys from previous runs to be attributed correctly. This event_log data migration can be invoked as follows:

      from dagster.core.storage.event_log.migration import migrate_event_log_data
      from dagster import DagsterInstance
      
      migrate_event_log_data(instance=DagsterInstance.get())
      
    • The interface of the Scheduler base class has changed substantially. If you've written a custom scheduler, please get in touch!

    • The partitioned schedule decorators now generate PartitionSetDefinition names using the schedule name, suffixed with _partitions.

    • The repository property on ScheduleExecutionContext is no longer available. If you were using this property to pass to Scheduler instance methods, this interface has changed significantly. Please see the Scheduler class documentation for details.

    • The CLI option --celery-base-priority is no longer available for the command: dagster pipeline backfill. Use the tags option to specify the celery priority, (e.g. dagster pipeline backfill my_pipeline --tags '{ "dagster-celery/run_priority": 3 }'

    • The execute_partition_set API has been removed.

    • The deprecated is_optional parameter to Field and OutputDefinition has been removed. Use is_required instead.

    • The deprecated runtime_type property on InputDefinition and OutputDefinition has been removed. Use dagster_type instead.

    • The deprecated has_runtime_type, runtime_type_named, and all_runtime_types methods on PipelineDefinition have been removed. Use has_dagster_type, dagster_type_named, and all_dagster_types instead.

    • The deprecated all_runtime_types method on SolidDefinition and CompositeSolidDefinition has been removed. Use all_dagster_types instead.

    • The deprecated metadata argument to SolidDefinition and @solid has been removed. Use tags instead.

    • The graphviz-based DAG visualization in Dagster core has been removed. Please use Dagit!

  • dagit

    • dagit-cli has been removed, and dagit is now the only console entrypoint.
  • dagster-aws

    • The AWS CLI has been removed.
    • dagster_aws.EmrRunJobFlowSolidDefinition has been removed.
  • dagster-bash

    • This package has been renamed to dagster-shell. Thebash_command_solid and bash_script_solid solid factory functions have been renamed to create_shell_command_solid and create_shell_script_solid.
  • dagster-celery

    • The CLI option --celery-base-priority is no longer available for the command: dagster pipeline backfill. Use the tags option to specify the celery priority, (e.g. dagster pipeline backfill my_pipeline --tags '{ "dagster-celery/run_priority": 3 }'
  • dagster-dask

    • The config schema for the dagster_dask.dask_executor has changed. The previous config should now be nested under the key local.
  • dagster-gcp

    • The BigQueryClient has been removed. Use bigquery_resource instead.
  • dagster-dbt

    • The dagster-dbt package has been removed. This was inadequate as a reference integration, and will be replaced in 0.8.x.
  • dagster-spark

    • dagster_spark.SparkSolidDefinition has been removed - use create_spark_solid instead.
    • The SparkRDD Dagster type, which only worked with an in-memory engine, has been removed.
  • dagster-twilio

    • The TwilioClient has been removed. Use twilio_resource instead.

New

  • dagster

    • You may now set asset_key on any Materialization to use the new asset system. You will also need to configure an asset-aware storage, such as Postgres. The longitudinal_pipeline example demonstrates this system.
    • The partitioned schedule decorators now support an optional end_time.
    • Opt-in telemetry now reports the Python version being used.
  • dagit

    • Dagit's GraphQL playground is now available at /graphiql as well as at /graphql.
  • dagster-aws

    • The dagster_aws.S3ComputeLogManager may now be configured to override the S3 endpoint and associated SSL settings.
    • Config string and integer values in the S3 tooling may now be set using either environment variables or literals.
  • dagster-azure

    • We've added the dagster-azure package, with support for Azure Data Lake Storage Gen2; you can use the adls2_system_storage or, for direct access, the adls2_resource resource. (Thanks @sd2k!)
  • dagster-dask

    • Dask clusters are now supported by dagster_dask.dask_executor. For full support, you will need to install extras with pip install dagster-dask[yarn, pbs, kube]. (Thanks @DavidKatz-il!)
  • dagster-databricks

    • We've added the dagster-databricks package, with support for running PySpark steps on Databricks clusters through the databricks_pyspark_step_launcher. (Thanks @sd2k!)
  • dagster-gcp

    • Config string and integer values in the BigQuery, Dataproc, and GCS tooling may now be set using either environment variables or literals.
  • dagster-k8s

    • Added the CeleryK8sRunLauncher to submit execution plan steps to Celery task queues for execution as k8s Jobs.
    • Added the ability to specify resource limits on a per-pipeline and per-step basis for k8s Jobs.
    • Many improvements and bug fixes to the dagster-k8s Helm chart.
  • dagster-pandas

    • Config string and integer values in the dagster-pandas input and output schemas may now be set using either environment variables or literals.
  • dagster-papertrail

    • Config string and integer values in the papertrail_logger may now be set using either environment variables or literals.
  • dagster-pyspark

    • PySpark solids can now run on EMR, using the emr_pyspark_step_launcher, or on Databricks using the new dagster-databricks package. The emr_pyspark example demonstrates how to use a step launcher.
  • dagster-snowflake

    • Config string and integer values in the snowflake_resource may now be set using either environment variables or literals.
  • dagster-spark

    • dagster_spark.create_spark_solid now accepts a required_resource_keys argument, which enables setting up a step launcher for Spark solids, like the emr_pyspark_step_launcher.

Bugfix

  • dagster pipeline execute now sets a non-zero exit code when pipeline execution fails.

0.7.16#

Bugfix

  • Enabled NoOpComputeLogManager to be configured as the compute_logs implementation in dagster.yaml
  • Suppressed noisy error messages in logs from skipped steps

0.7.15#

New

  • Improve dagster scheduler state reconciliation.

0.7.14#

New

  • Dagit now allows re-executing arbitrary step subset via step selector syntax, regardless of whether the previous pipeline failed or not.
  • Added a search filter for the root Assets page
  • Adds tooltip explanations for disabled run actions
  • The last output of the cron job command created by the scheduler is now stored in a file. A new dagster schedule logs {schedule_name} command will show the log file for a given schedule. This helps uncover errors like missing environment variables and import errors.
  • The Dagit schedule page will now show inconsistency errors between schedule state and the cron tab that were previously only displayed by the dagster schedule debug command. As before, these errors can be resolve using dagster schedule up

Bugfix

  • Fixes an issue with config schema validation on Arrays
  • Fixes an issue with initializing K8sRunLauncher when configured via dagster.yaml
  • Fixes a race condition in Airflow injection logic that happens when multiple Operators try to create PipelineRun entries simultaneously.
  • Fixed an issue with schedules that had invalid config not logging the appropriate error.

0.7.13#

Breaking Changes

  • dagster pipeline backfill command no longer takes a mode flag. Instead, it uses the mode specified on the PartitionSetDefinition. Similarly, the runs created from the backfill also use the solid_subset specified on the PartitionSetDefinition

BugFix

  • Fixes a bug where using solid subsets when launching pipeline runs would fail config validation.
  • (dagster-gcp) allow multiple "bq_solid_for_queries" solids to co-exist in a pipeline
  • Improve scheduler state reconciliation with dagster-cron scheduler. dagster schedule debug command will display issues related to missing crob jobs, extraneous cron jobs, and duplicate cron jobs. Running dagster schedule up will fix any issues.

New

  • The dagster-airflow package now supports loading Airflow dags without depending on initialized Airflow db
  • Improvements to the longitudinal partitioned schedule view, including live updates, run filtering, and better default states.
  • Added user warning for dagster library packages that are out of sync with the core dagster package.

0.7.12#

Bugfix

  • We now only render the subset of an execution plan that has actually executed, and persist that subset information along with the snapshot.
  • @pipeline and @composite_solid now correctly capture __doc__ from the function they decorate.
  • Fixed a bug with using solid subsets in the Dagit playground

0.7.11#

Bugfix

  • Fixed an issue with strict snapshot ID matching when loading historical snapshots, which caused errors on the Runs page when viewing historical runs.
  • Fixed an issue where dagster_celery had introduced a spurious dependency on dagster_k8s (#2435)
  • Fixed an issue where our Airflow, Celery, and Dask integrations required S3 or GCS storage and prevented use of filesystem storage. Filesystem storage is now also permitted, to enable use of these integrations with distributed filesystems like NFS (#2436).

0.7.10#

New

  • RepositoryDefinition now takes schedule_defs and partition_set_defs directly. The loading scheme for these definitions via repository.yaml under the scheduler: and partitions: keys is deprecated and expected to be removed in 0.8.0.
  • Mark published modules as python 3.8 compatible.
  • The dagster-airflow package supports loading all Airflow DAGs within a directory path, file path, or Airflow DagBag.
  • The dagster-airflow package supports loading all 23 DAGs in Airflow example_dags folder and execution of 17 of them (see: make_dagster_repo_from_airflow_example_dags).
  • The dagster-celery CLI tools now allow you to pass additional arguments through to the underlying celery CLI, e.g., running dagster-celery worker start -n my-worker -- --uid=42 will pass the --uid flag to celery.
  • It is now possible to create a PresetDefinition that has no environment defined.
  • Added dagster schedule debug command to help debug scheduler state.
  • The SystemCronScheduler now verifies that a cron job has been successfully been added to the crontab when turning a schedule on, and shows an error message if unsuccessful.

Breaking Changes

  • A dagster instance migrate is required for this release to support the new experimental assets view.
  • Runs created prior to 0.7.8 will no longer render their execution plans as DAGs. We are only rendering execution plans that have been persisted. Logs are still available.
  • Path is no longer valid in config schemas. Use str or dagster.String instead.
  • Removed the @pyspark_solid decorator - its functionality, which was experimental, is subsumed by requiring a StepLauncher resource (e.g. emr_pyspark_step_launcher) on the solid.

Dagit

  • Merged "re-execute", "single-step re-execute", "resume/retry" buttons into one "re-execute" button with three dropdown selections on the Run page.

Experimental

  • Added new asset_key string parameter to Materializations and created a new “Assets” tab in Dagit to view pipelines and runs associated with these keys. The API and UI of these asset-based are likely to change, but feedback is welcome and will be used to inform these changes.
  • Added an emr_pyspark_step_launcher that enables launching PySpark solids in EMR. The "simple_pyspark" example demonstrates how it’s used.

Bugfix

  • Fixed an issue when running Jupyter notebooks in a Python 2 kernel through dagstermill with Dagster running in Python 3.
  • Improved error messages produced when dagstermill spins up an in-notebook context.
  • Fixed an issue with retrieving step events from CompositeSolidResult objects.

0.7.9#

Breaking Changes

  • If you are launching runs using DagsterInstance.launch_run, this method now takes a run id instead of an instance of PipelineRun. Additionally, DagsterInstance.create_run and DagsterInstance.create_empty_run have been replaced by DagsterInstance.get_or_create_run and DagsterInstance.create_run_for_pipeline.
  • If you have implemented your own RunLauncher, there are two required changes:
    • RunLauncher.launch_run takes a pipeline run that has already been created. You should remove any calls to instance.create_run in this method.
    • Instead of calling startPipelineExecution (defined in the dagster_graphql.client.query.START_PIPELINE_EXECUTION_MUTATION) in the run launcher, you should call startPipelineExecutionForCreatedRun (defined in dagster_graphql.client.query.START_PIPELINE_EXECUTION_FOR_CREATED_RUN_MUTATION).
    • Refer to the RemoteDagitRunLauncher for an example implementation.

New

  • Improvements to preset and solid subselection in the playground. An inline preview of the pipeline instead of a modal when doing subselection, and the correct subselection is chosen when selecting a preset.
  • Improvements to the log searching. Tokenization and autocompletion for searching messages types and for specific steps.
  • You can now view the structure of pipelines from historical runs, even if that pipeline no longer exists in the loaded repository or has changed structure.
  • Historical execution plans are now viewable, even if the pipeline has changed structure.
  • Added metadata link to raw compute logs for all StepStart events in PipelineRun view and Step view.
  • Improved error handling for the scheduler. If a scheduled run has config errors, the errors are persisted to the event log for the run and can be viewed in Dagit.

Bugfix

  • No longer manually dispose sqlalchemy engine in dagster-postgres
  • Made boto3 dependency in dagster-aws more flexible (#2418)
  • Fixed tooltip UI cleanup in partitioned schedule view

Documentation

  • Brand new documentation site, available at https://docs.dagster.io
  • The tutorial has been restructured to multiple sections, and the examples in intro_tutorial have been rearranged to separate folders to reflect this.

0.7.8#

Breaking Changes

  • The execute_pipeline_with_mode and execute_pipeline_with_preset APIs have been dropped in favor of new top level arguments to execute_pipeline, mode and preset.
  • The use of RunConfig to pass options to execute_pipeline has been deprecated, and RunConfig will be removed in 0.8.0.
  • The execute_solid_within_pipeline and execute_solids_within_pipeline APIs, intended to support tests, now take new top level arguments mode and preset.

New

  • The dagster-aws Redshift resource now supports providing an error callback to debug failed queries.
  • We now persist serialized execution plans for historical runs. They will render correctly even if the pipeline structure has changed or if it does not exist in the current loaded repository.
  • Clicking on a pipeline tag in the Runs view will apply that tag as a filter.

Bugfix

  • Fixed a bug where telemetry logger would create a log file (but not write any logs) even when telemetry was disabled.

Experimental

  • The dagster-airflow package supports ingesting Airflow dags and running them as dagster pipelines (see: make_dagster_pipeline_from_airflow_dag). This is in the early experimentation phase.
  • Improved the layout of the experimental partition runs table on the Schedules detailed view.

Documentation

  • Fixed a grammatical error (Thanks @flowersw!)

0.7.7#

Breaking Changes

  • The default sqlite and dagster-postgres implementations have been altered to extract the event step_key field as a column, to enable faster per-step queries. You will need to run dagster instance migrate to update the schema. You may optionally migrate your historical event log data to extract the step_key using the migrate_event_log_data function. This will ensure that your historical event log data will be captured in future step-key based views. This event_log data migration can be invoked as follows:

    from dagster.core.storage.event_log.migration import migrate_event_log_data
    from dagster import DagsterInstance
    
    migrate_event_log_data(instance=DagsterInstance.get())
    
  • We have made pipeline metadata serializable and persist that along with run information. While there are no user-facing features to leverage this yet, it does require an instance migration. Run dagster instance migrate. If you have already run the migration for the event_log changes above, you do not need to run it again. Any unforeseen errors related to the new snapshot_id in the runs table or the new snapshots table are related to this migration.

  • dagster-pandas ColumnTypeConstraint has been removed in favor of ColumnDTypeFnConstraint and ColumnDTypeInSetConstraint.

New

  • You can now specify that dagstermill output notebooks be yielded as an output from dagstermill solids, in addition to being materialized.
  • You may now set the extension on files created using the FileManager machinery.
  • dagster-pandas typed PandasColumn constructors now support pandas 1.0 dtypes.
  • The Dagit Playground has been restructured to make the relationship between Preset, Partition Sets, Modes, and subsets more clear. All of these buttons have be reconciled and moved to the left side of the Playground.
  • Config sections that are required but not filled out in the Dagit playground are now detected and labeled in orange.
  • dagster-celery config now support using env: to load from environment variables.

Bugfix

  • Fixed a bug where selecting a preset in dagit would not populate tags specified on the pipeline definition.
  • Fixed a bug where metadata attached to a raised Failure was not displayed in the error modal in dagit.
  • Fixed an issue where reimporting dagstermill and calling dagstermill.get_context() outside of the parameters cell of a dagstermill notebook could lead to unexpected behavior.
  • Fixed an issue with connection pooling in dagster-postgres, improving responsiveness when using the Postgres-backed storages.

Experimental

  • Added a longitudinal view of runs for on the Schedule tab for scheduled, partitioned pipelines. Includes views of run status, execution time, and materializations across partitions. The UI is in flux and is currently optimized for daily schedules, but feedback is welcome.

0.7.6#

Breaking Changes

  • default_value in Field no longer accepts native instances of python enums. Instead the underlying string representation in the config system must be used.
  • default_value in Field no longer accepts callables.
  • The dagster_aws imports have been reorganized; you should now import resources from dagster_aws.<AWS service name>. dagster_aws provides s3, emr, redshift, and cloudwatch modules.
  • The dagster_aws S3 resource no longer attempts to model the underlying boto3 API, and you can now just use any boto3 S3 API directly on a S3 resource, e.g. context.resources.s3.list_objects_v2. (#2292)

New

  • New Playground view in dagit showing an interactive config map
  • Improved storage and UI for showing schedule attempts
  • Added the ability to set default values in InputDefinition
  • Added CLI command dagster pipeline launch to launch runs using a configured RunLauncher
  • Added ability to specify pipeline run tags using the CLI
  • Added a pdb utility to SolidExecutionContext to help with debugging, available within a solid as context.pdb
  • Added PresetDefinition.with_additional_config to allow for config overrides
  • Added resource name to log messages generated during resource initialization
  • Added grouping tags for runs that have been retried / reexecuted.

Bugfix

  • Fixed a bug where date range partitions with a specified end date was clipping the last day
  • Fixed an issue where some schedule attempts that failed to start would be marked running forever.
  • Fixed the @weekly partitioned schedule decorator
  • Fixed timezone inconsistencies between the runs view and the schedules view
  • Integers are now accepted as valid values for Float config fields
  • Fixed an issue when executing dagstermill solids with config that contained quote characters.

dagstermill

  • The Jupyter kernel to use may now be specified when creating dagster notebooks with the --kernel flag.

dagster-dbt

  • dbt_solid now has a Nothing input to allow for sequencing

dagster-k8s

  • Added get_celery_engine_config to select celery engine, leveraging Celery infrastructure

Documentation

  • Improvements to the airline and bay bikes demos
  • Improvements to our dask deployment docs (Thanks jswaney!!)

0.7.5#

New

  • Added the IntSource type, which lets integers be set from environment variables in config.

  • You may now set tags on pipeline definitions. These will resolve in the following cases:

    1. Loading in the playground view in Dagit will pre-populate the tag container.
    2. Loading partition sets from the preset/config picker will pre-populate the tag container with the union of pipeline tags and partition tags, with partition tags taking precedence.
    3. Executing from the CLI will generate runs with the pipeline tags.
    4. Executing programmatically using the execute_pipeline api will create a run with the union of pipeline tags and RunConfig tags, with RunConfig tags taking precedence.
    5. Scheduled runs (both launched and executed) will have the union of pipeline tags and the schedule tags function, with the schedule tags taking precedence.
  • Output materialization configs may now yield multiple Materializations, and the tutorial has been updated to reflect this.

  • We now export the SolidExecutionContext in the public API so that users can correctly type hint solid compute functions.

Dagit

  • Pipeline run tags are now preserved when resuming/retrying from Dagit.
  • Scheduled run stats are now grouped by partition.
  • A "preparing" section has been added to the execution viewer. This shows steps that are in progress of starting execution.
  • Markers emitted by the underlying execution engines are now visualized in the Dagit execution timeline.

Bugfix

  • Resume/retry now works as expected in the presence of solids that yield optional outputs.
  • Fixed an issue where dagster-celery workers were failing to start in the presence of config values that were None.
  • Fixed an issue with attempting to set threads_per_worker on Dask distributed clusters.

dagster-postgres

  • All postgres config may now be set using environment variables in config.

dagster-aws

  • The s3_resource now exposes a list_objects_v2 method corresponding to the underlying boto3 API. (Thanks, @basilvetas!)
  • Added the redshift_resource to access Redshift databases.

dagster-k8s

  • The K8sRunLauncher config now includes the load_kubeconfig and kubeconfig_file options.

Documentation

  • Fixes and improvements.

Dependencies

  • dagster-airflow no longer pins its werkzeug dependency.

Community

  • We've added opt-in telemetry to Dagster so we can collect usage statistics in order to inform development priorities. Telemetry data will motivate projects such as adding features in frequently-used parts of the CLI and adding more examples in the docs in areas where users encounter more errors.

    We will not see or store solid definitions (including generated context) or pipeline definitions (including modes and resources). We will not see or store any data that is processed within solids and pipelines.

    If you'd like to opt in to telemetry, please add the following to $DAGSTER_HOME/dagster.yaml:

    telemetry:
      enabled: true
    
  • Thanks to @basilvetas and @hspak for their contributions!

0.7.4#

New

  • It is now possible to use Postgres to back schedule storage by configuring dagster_postgres.PostgresScheduleStorage on the instance.
  • Added the execute_pipeline_with_mode API to allow executing a pipeline in test with a specific mode without having to specify RunConfig.
  • Experimental support for retries in the Celery executor.
  • It is now possible to set run-level priorities for backfills run using the Celery executor by passing --celery-base-priority to dagster pipeline backfill.
  • Added the @weekly schedule decorator.

Deprecations

  • The dagster-ge library has been removed from this release due to drift from the underlying Great Expectations implementation.

dagster-pandas

  • PandasColumn now includes an is_optional flag, replacing the previous ColumnExistsConstraint.
  • You can now pass the ignore_missing_values flag to PandasColumn in order to apply column constraints only to the non-missing rows in a column.

dagster-k8s

  • The Helm chart now includes provision for an Ingress and for multiple Celery queues.

Documentation

  • Improvements and fixes.

0.7.3#

New

  • It is now possible to configure a Dagit instance to disable executing pipeline runs in a local subprocess.
  • Resource initialization, teardown, and associated failure states now emit structured events visible in Dagit. Structured events for pipeline errors and multiprocess execution have been consolidated and rationalized.
  • Support Redis queue provider in dagster-k8s Helm chart.
  • Support external postgresql in dagster-k8s Helm chart.

Bugfix

  • Fixed an issue with inaccurate timings on some resource initializations.
  • Fixed an issue that could cause the multiprocess engine to spin forever.
  • Fixed an issue with default value resolution when a config value was set using SourceString.
  • Fixed an issue when loading logs from a pipeline belonging to a different repository in Dagit.
  • Fixed an issue with where the CLI command dagster schedule up would fail in certain scenarios with the SystemCronScheduler.

Pandas

  • Column constraints can now be configured to permit NaN values.

Dagstermill

  • Removed a spurious dependency on sklearn.

Docs

  • Improvements and fixes to docs.
  • Restored dagster.readthedocs.io.

Experimental

  • An initial implementation of solid retries, throwing a RetryRequested exception, was added. This API is experimental and likely to change.

Other

  • Renamed property runtime_type to dagster_type in definitions. The following are deprecated and will be removed in a future version.
    • InputDefinition.runtime_type is deprecated. Use InputDefinition.dagster_type instead.
    • OutputDefinition.runtime_type is deprecated. Use OutputDefinition.dagster_type instead.
    • CompositeSolidDefinition.all_runtime_types is deprecated. Use CompositeSolidDefinition.all_dagster_types instead.
    • SolidDefinition.all_runtime_types is deprecated. Use SolidDefinition.all_dagster_types instead.
    • PipelineDefinition.has_runtime_type is deprecated. Use PipelineDefinition.has_dagster_type instead.
    • PipelineDefinition.runtime_type_named is deprecated. Use PipelineDefinition.dagster_type_named instead.
    • PipelineDefinition.all_runtime_types is deprecated. Use PipelineDefinition.all_dagster_types instead.

0.7.2#

Docs

  • New docs site at docs.dagster.io.
  • dagster.readthedocs.io is currently stale due to availability issues.

New

  • Improvements to S3 Resource. (Thanks @dwallace0723!)
  • Better error messages in Dagit.
  • Better font/styling support in Dagit.
  • Changed OutputDefinition to take is_required rather than is_optional argument. This is to remain consistent with changes to Field in 0.7.1 and to avoid confusion with python's typing and dagster's definition of Optional, which indicates None-ability, rather than existence. is_optional is deprecated and will be removed in a future version.
  • Added support for Flower in dagster-k8s.
  • Added support for environment variable config in dagster-snowflake.

Bugfixes

  • Improved performance in Dagit waterfall view.
  • Fixed bug when executing solids downstream of a skipped solid.
  • Improved navigation experience for pipelines in Dagit.
  • Fixed for the dagster-aws CLI tool.
  • Fixed issue starting Dagit without DAGSTER_HOME set on windows.
  • Fixed pipeline subset execution in partition-based schedules.

0.7.1#

Dagit

  • Dagit now looks up an available port on which to run when the default port is not available. (Thanks @rparrapy!)

dagster_pandas

  • Hydration and materialization are now configurable on dagster_pandas dataframes.

dagster_aws

  • The s3_resource no longer uses an unsigned session by default.

Bugfixes

  • Type check messages are now displayed in Dagit.
  • Failure metadata is now surfaced in Dagit.
  • Dagit now correctly displays the execution time of steps that error.
  • Error messages now appear correctly in console logging.
  • GCS storage is now more robust to transient failures.
  • Fixed an issue where some event logs could be duplicated in Dagit.
  • Fixed an issue when reading config from an environment variable that wasn't set.
  • Fixed an issue when loading a repository or pipeline from a file target on Windows.
  • Fixed an issue where deleted runs could cause the scheduler page to crash in Dagit.

Documentation

  • Expanded and improved docs and error messages.

0.7.0 "Waiting to Exhale"#

Breaking Changes

There are a substantial number of breaking changes in the 0.7.0 release. Please see 070_MIGRATION.md for instructions regarding migrating old code.

Scheduler

  • The scheduler configuration has been moved from the @schedules decorator to DagsterInstance. Existing schedules that have been running are no longer compatible with current storage. To migrate, remove the scheduler argument on all @schedules decorators:

    instead of:

    @schedules(scheduler=SystemCronScheduler)
    def define_schedules():
      ...
    

    Remove the scheduler argument:

    @schedules
    def define_schedules():
      ...
    

    Next, configure the scheduler on your instance by adding the following to $DAGSTER_HOME/dagster.yaml:

    scheduler:
      module: dagster_cron.cron_scheduler
      class: SystemCronScheduler
    

    Finally, if you had any existing schedules running, delete the existing $DAGSTER_HOME/schedules directory and run dagster schedule wipe && dagster schedule up to re-instatiate schedules in a valid state.

  • The should_execute and environment_dict_fn argument to ScheduleDefinition now have a required first argument context, representing the ScheduleExecutionContext

Config System Changes

  • In the config system, Dict has been renamed to Shape; List to Array; Optional to Noneable; and PermissiveDict to Permissive. The motivation here is to clearly delineate config use cases versus cases where you are using types as the inputs and outputs of solids as well as python typing types (for mypy and friends). We believe this will be clearer to users in addition to simplifying our own implementation and internal abstractions.

    Our recommended fix is not to use Shape and Array, but instead to use our new condensed config specification API. This allow one to use bare dictionaries instead of Shape, lists with one member instead of Array, bare types instead of Field with a single argument, and python primitive types (int, bool etc) instead of the dagster equivalents. These result in dramatically less verbose config specs in most cases.

    So instead of

    from dagster import Shape, Field, Int, Array, String
    # ... code
    config=Shape({ # Dict prior to change
          'some_int' : Field(Int),
          'some_list: Field(Array[String]) # List prior to change
      })
    

    one can instead write:

    config={'some_int': int, 'some_list': [str]}
    

    No imports and much simpler, cleaner syntax.

  • config_field is no longer a valid argument on solid, SolidDefinition, ExecutorDefintion, executor, LoggerDefinition, logger, ResourceDefinition, resource, system_storage, and SystemStorageDefinition. Use config instead.

  • For composite solids, the config_fn no longer takes a ConfigMappingContext, and the context has been deleted. To upgrade, remove the first argument to config_fn.

    So instead of

    @composite_solid(config={}, config_fn=lambda context, config: {})
    

    one must instead write:

    @composite_solid(config={}, config_fn=lambda config: {})
    
  • Field takes a is_required rather than a is_optional argument. This is to avoid confusion with python's typing and dagster's definition of Optional, which indicates None-ability, rather than existence. is_optional is deprecated and will be removed in a future version.

Required Resources

  • All solids, types, and config functions that use a resource must explicitly list that resource using the argument required_resource_keys. This is to enable efficient resource management during pipeline execution, especially in a multiprocessing or remote execution environment.

  • The @system_storage decorator now requires argument required_resource_keys, which was previously optional.

Dagster Type System Changes

  • dagster.Set and dagster.Tuple can no longer be used within the config system.
  • Dagster types are now instances of DagsterType, rather than a class than inherits from RuntimeType. Instead of dynamically generating a class to create a custom runtime type, just create an instance of a DagsterType. The type checking function is now an argument to the DagsterType, rather than an abstract method that has to be implemented in a subclass.
  • RuntimeType has been renamed to DagsterType is now an encouraged API for type creation.
  • Core type check function of DagsterType can now return a naked bool in addition to a TypeCheck object.
  • type_check_fn on DagsterType (formerly type_check and RuntimeType, respectively) now takes a first argument context of type TypeCheckContext in addition to the second argument of value.
  • define_python_dagster_type has been eliminated in favor of PythonObjectDagsterType .
  • dagster_type has been renamed to usable_as_dagster_type.
  • as_dagster_type has been removed and similar capabilities added as make_python_type_usable_as_dagster_type.
  • PythonObjectDagsterType and usable_as_dagster_type no longer take a type_check argument. If a custom type_check is needed, use DagsterType.
  • As a consequence of these changes, if you were previously using dagster_pyspark or dagster_pandas and expecting Pyspark or Pandas types to work as Dagster types, e.g., in type annotations to functions decorated with @solid to indicate that they are input or output types for a solid, you will need to call make_python_type_usable_as_dagster_type from your code in order to map the Python types to the Dagster types, or just use the Dagster types (dagster_pandas.DataFrame instead of pandas.DataFrame) directly.

Other

  • We no longer publish base Docker images. Please see the updated deployment docs for an example Dockerfile off of which you can work.
  • step_metadata_fn has been removed from SolidDefinition & @solid.
  • SolidDefinition & @solid now takes tags and enforces that values are strings or are safely encoded as JSON. metadata is deprecated and will be removed in a future version.
  • resource_mapper_fn has been removed from SolidInvocation.

New

  • Dagit now includes a much richer execution view, with a Gantt-style visualization of step execution and a live timeline.

  • Early support for Python 3.8 is now available, and Dagster/Dagit along with many of our libraries are now tested against 3.8. Note that several of our upstream dependencies have yet to publish wheels for 3.8 on all platforms, so running on Python 3.8 likely still involves building some dependencies from source.

  • dagster/priority tags can now be used to prioritize the order of execution for the built-in in-process and multiprocess engines.

  • dagster-postgres storages can now be configured with separate arguments and environment variables, such as:

    run_storage:
      module: dagster_postgres.run_storage
      class: PostgresRunStorage
      config:
        postgres_db:
          username: test
          password:
            env: ENV_VAR_FOR_PG_PASSWORD
          hostname: localhost
          db_name: test
    
  • Support for RunLaunchers on DagsterInstance allows for execution to be "launched" outside of the Dagit/Dagster process. As one example, this is used by dagster-k8s to submit pipeline execution as a Kubernetes Job.

  • Added support for adding tags to runs initiated from the Playground view in Dagit.

  • Added @monthly_schedule decorator.

  • Added Enum.from_python_enum helper to wrap Python enums for config. (Thanks @kdungs!)

  • [dagster-bash] The Dagster bash solid factory now passes along kwargs to the underlying solid construction, and now has a single Nothing input by default to make it easier to create a sequencing dependency. Also, logs are now buffered by default to make execution less noisy.

  • [dagster-aws] We've improved our EMR support substantially in this release. The dagster_aws.emr library now provides an EmrJobRunner with various utilities for creating EMR clusters, submitting jobs, and waiting for jobs/logs. We also now provide a emr_pyspark_resource, which together with the new @pyspark_solid decorator makes moving pyspark execution from your laptop to EMR as simple as changing modes. [dagster-pandas] Added create_dagster_pandas_dataframe_type, PandasColumn, and Constraint API's in order for users to create custom types which perform column validation, dataframe validation, summary statistics emission, and dataframe serialization/deserialization.

  • [dagster-gcp] GCS is now supported for system storage, as well as being supported with the Dask executor. (Thanks @habibutsu!) Bigquery solids have also been updated to support the new API.

Bugfix

  • Ensured that all implementations of RunStorage clean up pipeline run tags when a run is deleted. Requires a storage migration, using dagster instance migrate.
  • The multiprocess and Celery engines now handle solid subsets correctly.
  • The multiprocess and Celery engines will now correctly emit skip events for steps downstream of failures and other skips.
  • The @solid and @lambda_solid decorators now correctly wrap their decorated functions, in the sense of functools.wraps.
  • Performance improvements in Dagit when working with runs with large configurations.
  • The Helm chart in dagster_k8s has been hardened against various failure modes and is now compatible with Helm 2.
  • SQLite run and event log storages are more robust to concurrent use.
  • Improvements to error messages and to handling of user code errors in input hydration and output materialization logic.
  • Fixed an issue where the Airflow scheduler could hang when attempting to load dagster-airflow pipelines.
  • We now handle our SQLAlchemy connections in a more canonical way (thanks @zzztimbo!).
  • Fixed an issue using S3 system storage with certain custom serialization strategies.
  • Fixed an issue leaking orphan processes from compute logging.
  • Fixed an issue leaking semaphores from Dagit.
  • Setting the raise_error flag in execute_pipeline now actually raises user exceptions instead of a wrapper type.

Documentation

  • Our docs have been reorganized and expanded (thanks @habibutsu, @vatervonacht, @zzztimbo). We'd love feedback and contributions!

Thank you Thank you to all of the community contributors to this release!! In alphabetical order: @habibutsu, @kdungs, @vatervonacht, @zzztimbo.

0.6.9#

Bugfix

  • Improved SQLite concurrency issues, uncovered while using concurrent nodes in Airflow
  • Fixed sqlalchemy warnings (thanks @zzztimbo!)
  • Fixed Airflow integration issue where a Dagster child process triggered a signal handler of a parent Airflow process via a process fork
  • Fixed GCS and AWS intermediate store implementations to be compatible with read/write mode serialization strategies
  • Improve test stability

Documentation

  • Improved descriptions for setting up the cron scheduler (thanks @zzztimbo!)

0.6.8#

New

  • Added the dagster-github library, a community contribution from @Ramshackle-Jamathon and @k-mahoney!

dagster-celery

  • Simplified and improved config handling.
  • An engine event is now emitted when the engine fails to connect to a broker.

Bugfix

  • Fixes a file descriptor leak when running many concurrent dagster-graphql queries (e.g., for backfill).
  • The @pyspark_solid decorator now handles inputs correctly.
  • The handling of solid compute functions that accept kwargs but which are decorated with explicit input definitions has been rationalized.
  • Fixed race conditions in concurrent execution using SQLite event log storage with concurrent execution, uncovered by upstream improvements in the Python inotify library we use.

Documentation

  • Improved error messages when using system storages that don't fulfill executor requirements.

0.6.7#

New

  • We are now more permissive when specifying configuration schema in order make constructing configuration schema more concise.
  • When specifying the value of scalar inputs in config, one can now specify that value directly as the key of the input, rather than having to embed it within a value key.

Breaking

  • The implementation of SQL-based event log storages has been consolidated, which has entailed a schema change. If you have event logs stored in a Postgres- or SQLite-backed event log storage, and you would like to maintain access to these logs, you should run dagster instance migrate. To check what event log storages you are using, run dagster instance info.
  • Type matches on both sides of an InputMapping or OutputMapping are now enforced.

New

  • Dagster is now tested on Python 3.8
  • Added the dagster-celery library, which implements a Celery-based engine for parallel pipeline execution.
  • Added the dagster-k8s library, which includes a Helm chart for a simple Dagit installation on a Kubernetes cluster.

Dagit

  • The Explore UI now allows you to render a subset of a large DAG via a new solid query bar that accepts terms like solid_name+* and +solid_name+. When viewing very large DAGs, nothing is displayed by default and * produces the original behavior.
  • Performance improvements in the Explore UI and config editor for large pipelines.
  • The Explore UI now includes a zoom slider that makes it easier to navigate large DAGs.
  • Dagit pages now render more gracefully in the presence of inconsistent run storage and event logs.
  • Improved handling of GraphQL errors and backend programming errors.
  • Minor display improvements.

dagster-aws

  • A default prefix is now configurable on APIs that use S3.
  • S3 APIs now parametrize region_name and endpoint_url.

dagster-gcp

  • A default prefix is now configurable on APIs that use GCS.

dagster-postgres

  • Performance improvements for Postgres-backed storages.

dagster-pyspark

  • Pyspark sessions may now be configured to be held open after pipeline execution completes, to enable extended test cases.

dagster-spark

  • spark_outputs must now be specified when initializing a SparkSolidDefinition, rather than in config.
  • Added new create_spark_solid helper and new spark_resource.
  • Improved EMR implementation.

Bugfix

  • Fixed an issue retrieving output values using SolidExecutionResult (e.g., in test) for dagster-pyspark solids.
  • Fixes an issue when expanding composite solids in Dagit.
  • Better errors when solid names collide.
  • Config mapping in composite solids now works as expected when the composite solid has no top level config.
  • Compute log filenames are now guaranteed not to exceed the POSIX limit of 255 chars.
  • Fixes an issue when copying and pasting solid names from Dagit.
  • Termination now works as expected in the multiprocessing executor.
  • The multiprocessing executor now executes parallel steps in the expected order.
  • The multiprocessing executor now correctly handles solid subsets.
  • Fixed a bad error condition in dagster_ssh.sftp_solid.
  • Fixed a bad error message giving incorrect log level suggestions.

Documentation

  • Minor fixes and improvements.

Thank you Thank you to all of the community contributors to this release!! In alphabetical order: @cclauss, @deem0n, @irabinovitch, @pseudoPixels, @Ramshackle-Jamathon, @rparrapy, @yamrzou.

0.6.6#

Breaking

  • The selector argument to PipelineDefinition has been removed. This API made it possible to construct a PipelineDefinition in an invalid state. Use PipelineDefinition.build_sub_pipeline instead.

New

  • Added the dagster_prometheus library, which exposes a basic Prometheus resource.
  • Dagster Airflow DAGs may now use GCS instead of S3 for storage.
  • Expanded interface for schedule management in Dagit.

Dagit

  • Performance improvements when loading, displaying, and editing config for large pipelines.
  • Smooth scrolling zoom in the explore tab replaces the previous two-step zoom.
  • No longer depends on internet fonts to run, allowing fully offline dev.
  • Typeahead behavior in search has improved.
  • Invocations of composite solids remain visible in the sidebar when the solid is expanded.
  • The config schema panel now appears when the config editor is first opened.
  • Interface now includes hints for autocompletion in the config editor.
  • Improved display of solid inputs and output in the explore tab.
  • Provides visual feedback while filter results are loading.
  • Better handling of pipelines that aren't present in the currently loaded repo.

Bugfix

  • Dagster Airflow DAGs previously could crash while handling Python errors in DAG logic.
  • Step failures when running Dagster Airflow DAGs were previously not being surfaced as task failures in Airflow.
  • Dagit could previously get into an invalid state when switching pipelines in the context of a solid subselection.
  • frozenlist and frozendict now pass Dagster's parameter type checks for list and dict.
  • The GraphQL playground in Dagit is now working again.

Nits

  • Dagit now prints its pid when it loads.
  • Third-party dependencies have been relaxed to reduce the risk of version conflicts.
  • Improvements to docs and example code.

0.6.5#

Breaking

  • The interface for type checks has changed. Previously the type_check_fn on a custom type was required to return None (=passed) or else raise Failure (=failed). Now, a type_check_fn may return True/False to indicate success/failure in the ordinary case, or else return a TypeCheck. The newsuccess field on TypeCheck now indicates success/failure. This obviates the need for the typecheck_metadata_fn, which has been removed.
  • Executions of individual composite solids (e.g. in test) now produce a CompositeSolidExecutionResult rather than a SolidExecutionResult.
  • dagster.core.storage.sqlite_run_storage.SqliteRunStorage has moved to dagster.core.storage.runs.SqliteRunStorage. Any persisted dagster.yaml files should be updated with the new classpath.
  • is_secret has been removed from Field. It was not being used to any effect.
  • The environmentType and configTypes fields have been removed from the dagster-graphql Pipeline type. The configDefinition field on SolidDefinition has been renamed to configField.

Bugfix

  • PresetDefinition.from_files is now guaranteed to give identical results across all Python minor versions.
  • Nested composite solids with no config, but with config mapping functions, now behave as expected.
  • The dagster-airflow DagsterKubernetesPodOperator has been fixed.
  • Dagit is more robust to changes in repositories.
  • Improvements to Dagit interface.

New

  • dagster_pyspark now supports remote execution on EMR with the @pyspark_solid decorator.

Nits

  • Documentation has been improved.
  • The top level config field features in the dagster.yaml will no longer have any effect.
  • Third-party dependencies have been relaxed to reduce the risk of version conflicts.

0.6.4#

  • Scheduler errors are now visible in Dagit
  • Run termination button no longer persists past execution completion
  • Fixes run termination for multiprocess execution
  • Fixes run termination on Windows
  • dagit no longer prematurely returns control to terminal on Windows
  • raise_on_error is now available on the execute_solid test utility
  • check_dagster_type added as a utility to help test type checks on custom types
  • Improved support in the type system for Set and Tuple types
  • Allow composite solids with config mapping to expose an empty config schema
  • Simplified graphql API arguments to single-step re-execution to use retryRunId, stepKeys execution parameters instead of a reexecutionConfig input object
  • Fixes missing step-level stdout/stderr from dagster CLI

0.6.3#

  • Adds a type_check parameter to PythonObjectType, as_dagster_type, and @as_dagster_type to enable custom type checks in place of default isinstance checks. See documentation here: https://dagster.readthedocs.io/en/latest/sections/learn/tutorial/types.html#custom-type-checks

  • Improved the type inference experience by automatically wrapping bare python types as dagster types.

  • Reworked our tutorial (now with more compelling/scary breakfast cereal examples) and public API documentation. See the new tutorial here: https://dagster.readthedocs.io/en/latest/sections/learn/tutorial/index.html

  • New solids explorer in Dagit allows you to browse and search for solids used across the repository.

  • Enabled solid dependency selection in the Dagit search filter.

    • To select a solid and its upstream dependencies, search +{solid_name}.
    • To select a solid and its downstream dependents, search {solid_name}+.
    • For both search +{solid_name}+.
  • Added a terminate button in Dagit to terminate an active run.

  • Added an --output flag to dagster-graphql CLI.

  • Added confirmation step for dagster run wipe and dagster schedule wipe commands (Thanks @shahvineet98).

  • Fixed a wrong title in the dagster-snowflake library README (Thanks @Step2Web).

0.6.2#

  • Changed composition functions @pipeline and @composite_solid to automatically give solids aliases with an incrementing integer suffix when there are conflicts. This removes to the need to manually alias solid definitions that are used multiple times.
  • Add dagster schedule wipe command to delete all schedules and remove all schedule cron jobs
  • execute_solid test util now works on composite solids.
  • Docs and example improvements: https://dagster.readthedocs.io/
  • Added --remote flag to dagster-graphql for querying remote Dagit servers.
  • Fixed issue with duplicate run tag autocomplete suggestions in Dagit (#1839)
  • Fixed Windows 10 / py3.6+ bug causing pipeline execution failures

0.6.1#

  • Fixed an issue where Dagster public images tagged latest on Docker Hub were erroneously published with an older version of Dagster (#1814)
  • Fixed an issue where the most recent scheduled run was not displayed in Dagit (#1815)
  • Fixed a bug with the dagster schedule start --start-all command (#1812)
  • Added a new scheduler command to restart a schedule: dagster schedule restart. Also added a flag to restart all running schedules: dagster schedule restart --restart-all-running.

0.6.0 "Impossible Princess"#

New

This major release includes features for scheduling, operating, and executing pipelines that elevate Dagit and dagster from a local development tool to a deployable service.

  • DagsterInstance introduced as centralized system to control run, event, compute log, and local intermediates storage.
  • A Scheduler abstraction has been introduced along side an initial implementation of SystemCronScheduler in dagster-cron.
  • dagster-aws has been extended with a CLI for deploying dagster to AWS. This can spin up a Dagit node and all the supporting infrastructure—security group, RDS PostgreSQL instance, etc.—without having to touch the AWS console, and for deploying your code to that instance.
  • Dagit
    • Runs: a completely overhauled Runs history page. Includes the ability to Retry, Cancel, and Delete pipeline runs from the new runs page.
    • Scheduler: a page for viewing and interacting with schedules.
    • Compute Logs: stdout and stderr are now viewable on a per execution step basis in each run. This is available in real time for currently executing runs and for historical runs.
    • A Reload button in the top right in Dagit restarts the web-server process and updates the UI to reflect repo changes, including DAG structure, solid names, type names, etc. This replaces the previous file system watching behavior.

Breaking Changes

  • --log and --log-dir no longer supported as CLI args. Existing runs and events stored via these flags are no longer compatible with current storage.
  • raise_on_error moved from in process executor config to argument to arguments in python API methods such as execute_pipeline

0.5.9#

  • Fixes an issue using custom types for fan-in dependencies with intermediate storage.

0.5.8#

  • Fixes an issue running some Dagstermill notebooks on Windows.
  • Fixes a transitive dependency issue with Airflow.
  • Bugfixes, performance improvements, and better documentation.

0.5.7#

  • Fixed an issue with specifying composite output mappings (#1674)
  • Added support for specifying Dask worker resources (#1679)
  • Fixed an issue with launching Dagit on Windows

0.5.6#

  • Execution details are now configurable. The new top-level ExecutorDefinition and @executor APIs are used to define in-process, multiprocess, and Dask executors, and may be used by users to define new executors. Like loggers and storage, executors may be added to a ModeDefinition and may be selected and configured through the execution field in the environment dict or YAML, including through Dagit. Executors may no longer be configured through the RunConfig.
  • The API of dagster-dask has changed. Pipelines are now executed on Dask using the ordinary execute_pipeline API, and the Dask executor is configured through the environment. (See the dagster-dask README for details.)
  • Added the PresetDefinition.from_files API for constructing a preset from a list of environment files (replacing the old usage of this class). PresetDefinition may now be directly instantiated with an environment dict.
  • Added a prototype integration with dbt.
  • Added a prototype integration with Great Expectations.
  • Added a prototype integration with Papertrail.
  • Added the dagster-bash library.
  • Added the dagster-ssh library.
  • Added the dagster-sftp library.
  • Loosened the PyYAML compatibility requirement.
  • The dagster CLI no longer takes a --raise-on-error or --no-raise-on-error flag. Set this option in executor config.
  • Added a MarkdownMetadataEntryData class, so events yielded from client code may now render markdown in their metadata.
  • Bug fixes, documentation improvements, and improvements to error display.

0.5.5#

  • Dagit now accepts parameters via environment variables prefixed with DAGIT_, e.g. DAGIT_PORT.
  • Fixes an issue with reexecuting Dagstermill notebooks from Dagit.
  • Bug fixes and display improvments in Dagit.

0.5.4#

  • Reworked the display of structured log information and system events in Dagit, including support for structured rendering of client-provided event metadata.
  • Dagster now generates events when intermediates are written to filesystem and S3 storage, and these events are displayed in Dagit and exposed in the GraphQL API.
  • Whitespace display styling in Dagit can now be toggled on and off.
  • Bug fixes, display nits and improvements, and improvements to JS build process, including better display for some classes of errors in Dagit and improvements to the config editor in Dagit.

0.5.3#

  • Pinned RxPY to 1.6.1 to avoid breaking changes in 3.0.0 (py3-only).
  • Most definition objects are now read-only, with getters corresponding to the previous properties.
  • The valueRepr field has been removed from ExecutionStepInputEvent and ExecutionStepOutputEvent.
  • Bug fixes and Dagit UX improvements, including SQL highlighting and error handling.

0.5.2#

  • Added top-level define_python_dagster_type function.
  • Renamed metadata_fn to typecheck_metadata_fn in all runtime type creation APIs.
  • Renamed result_value and result_values to output_value and output_values on SolidExecutionResult
  • Dagstermill: Reworked public API now contains only define_dagstermill_solid, get_context, yield_event, yield_result, DagstermillExecutionContext, DagstermillError, and DagstermillExecutionError. Please see the new guide for details.
  • Bug fixes, including failures for some dagster CLI invocations and incorrect handling of Airflow timestamps.